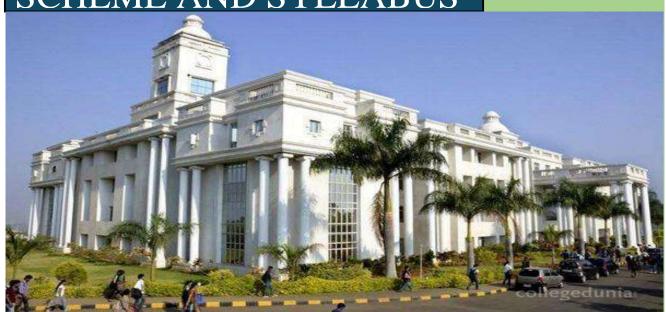
III to VIII Semester

Scheme & Syllabus



(2023-2024)

Department of

Aeronautical Engineering

SCHEME AND SYLLABUS

Aeronautical Engineering

GLOBAL ACADEMY OF TECHNOLOGY

(Autonomous Institution affiliated to VTU Belagavi)

Accredited by NAAC with 'A' grade,

NBA Accredited CS, E&C, E&E, MECH and IS branches)

Ideal Homes Township,

Raja Rajeshwari Nagar, Bengaluru-560098.

PREAMBLE

There has been a lot of discussion on the current mode of engineering education in our country and its impact on employability of fresh engineering graduates. Employability rating of fresh graduates is far from being satisfactory and industries are running short of trained and skilled manpower.

The demands of the society are dynamic, complex and keep changing at a rapid pace. Technological advancement is providing several innovations and breakthroughs exponentially in IT related domains like Artificial intelligence, Internet of Things, Machine learning, Automation and Robotics. These interventions are changing further the expectations of the society on products and services. In view of this, it becomes imperative to equip students to learn the art of linking science and engineering to the needs of the industry and society. The students must relate their learning to provide solutions to complex and real-life problems faced by the society. Engineering education needs to focus on how to apply knowledge to complex, unstructured problems in a global platform. The herculean task ahead of the engineering institutions is to produce graduates who are employable. Employability does not mean that a student should be placed in an industry before he/she leaves the portals of an institution. Employability means equipping engineering graduates with necessary technical skills, communication skills, leadership qualities, soft skills, professional ethics, and a social responsibility.

The onus of providing graduates with the attributes mentioned above lies with the institutions. Institutes should create a conducive atmosphere where students learn to stimulate their creativity and develop their talents. The graduates must be trained to work in teams and must be exposed to interdisciplinary areas to establish better links with present generation industries. The domain boundaries have collapsed and most of the engineering streams are getting integrated and blended. It is therefore crucial that the graduates must be made to understand the nuances of the engineering education and the importance of creative thinking, innovation and being sensitive to societal changes.

Global Academy of Technology (GAT) has understood the importance of broad-based education and has created a conductive environment for the students to blossom into complete individuals. A true broad-based education prepares students for life, without losing their areas of specialization and competence. Our aim is to become a premier institution imparting quality education in engineering and management to meet the changing needs of the industry and society. The entire team at GAT is committed to realize the dream of making GAT an institution of eminence and creating an indelible impression in the area of engineering education.

The present focus of the institute is to improve the laboratory infrastructure by bringing new industry relevant technology to enable higher level of learning in students, foster integrated learning by providing multiple industry relevant interfaces, enable students to take up industry relevant projects and encourage faculty to take up research by providing ability to add customer logic.

With changing times and emergence of disruptive technologies, GAT stands strong in adapting and encompassing these into the mainstream in shaping students' career, thus contributing directly to society and nation building.

Contents

Sl.	No.	Details	Page No.
	1	Global Academy of Technology- An overview	6
	1.1	Vision of the Institute	6
	1.2	Mission of the Institute	6
	1.3	Objectives	6
	1.4	Quality Policies	6
	1.5	Hallmarks of Global Academy of Technology	7
	2	Department of Aeronautical Engineering	8
	2.1	Vision of the Department	8
	2.2	Mission of the Department	8
	2.3	About the Department	9
	3	Salient features of Autonomy	9
	3.1	Outcome Based Education (OBE)	10
	3.2	Advantages of Outcome Based Education	11
	3.3	Program Outcomes (POs) as prescribed by National Board of Accreditation (NBA)	11
	3.4	Program Specific Outcomes (PSO)	12
	3.5	Some Definitions	12
	3.6	Choice Based Credit System (CBCS)	13
	3.7	Credit Definition	13
	3.8	Credit Distribution among Curricular components	14
	4	Scheme	16
	4.1	III semester Scheme	17
	4.2	IV semester Scheme	17
	4.3	V semester Scheme	18
	4.4	VI semester Scheme	19
	4.5	VII semester Scheme	20

5		Detailed Syllabus - III Semester	
	Course Code	Course	
5.1	MAT23301	Complex variables and probability	25
5.2	ANE23302	Mechanics of Materials	28
5.3	ANE23303	Fluid Mechanics	32
5.4	ANE23304	Aero Engineering Thermodynamics	35
5.5	ANE23305	Elements of Aeronautics	39
5.6	SCK23306	Social Connect and Responsibility	42
5.7	ANE23307X	Ability Enhancement course- III	43
5.8	NSK23308	National Service Scheme (NSS)	
5.9	PEK23308	Physical Education (PE) (Sports and Athletics)	
	YOK23308	Yoga	
	ANEL23309	CADD	54
6			
	Course Code	Course	
6.1	MAT23401	Transform Calculus and Numerical Techniques	58
6.2	ANE23402	Low Speed Aerodynamics	61
6.3	ANE23403	Aircraft Propulsion	65
6.4	ANE23404	Aircraft Structures -I	69
6.5	ANE23405	Aircraft Control Engineering	72
6.6	ANE23406X	Ability Enhancement course- IV	75
6.7	NSK23407	National Service Scheme (NSS)	
6.8	PEK23407	Physical Education (PE) (Sports and Athletics)	
	YOK23407	Yoga	
	ANE123408	Advanced CADD Lab	86

		Detailed Syllabus - V Semester	
7	Course Code	Course	
7.1	ANE23501	Aviation Management	90
7.2	ANE23502	Aircraft Structures -II	93
7.3	ANE23503	High-Speed Aerodynamics	97
7.4	ANEL23504	Modelling and analysis lab	101
7.5	ANE23505X	Professional Elective – I	114
7.6	ANEP23506	Mini Project	103
7.7	ANEK23507	Research Methodology and IPR	105
7.8	ANEK23508	Environmental Studies	108
7.9	UHK23509	National Service Scheme (NSS)	
	PEK23509	Physical Education (PE) (Sports and Athletics)	
	YOK23509	Yoga	
	ANE23510	Technical Authoring in Aircraft Manuals	111
8		Detailed Syllabus - VI Semester	
	Course Code	Course	
8.1	ANE23601	Aircraft Design	127
8.2	ANE23602	Flight Mechanics	131
8.3	ANE23603X	Professional Elective – II	139
8.4	ANE23604X	Open Elective -I	150
8.5	ANEP23605	Major Project Phase – I	134
8.6	ANEL23606	Flight Simulation Lab	137
8.7	ANE23607X	Ability Enhancement Course/ SkillDevelopment Course – III	159
8.8	UHK23608	National Service Scheme (NSS)	
8.9	PEK23608	Physical Education (PE) (Sports and Athletics)	
	YOK23608	Yoga	
	ANEK23609	Indian Knowledge System	171

9		Detailed Syllabus - VII Semester				
	Course Code	Course				
9.1	ANE23701	Avionics and Systems	176			
9.2	ANE23702	Computational Fluid Dynamics	179			
9.3	ANE23703	Space Mechanics	183			
9.4	ANE23704x	Professional Elective-III	188			
9.5	ANE23705x	Open Elective- II	200			
9.6	ANEP23706	Major Project Phase-II	186			
10		Detailed Syllabus - VIII Semester				
	Course Code	Course				
10.1	ANE23801x	Professional Elective -IV (Online Courses)				
10.2	ANE23802x	Open Elective - III (Online Courses)				
10.3	ANEI23803	ANEI23803 Internship + Technical Seminar (Industry/Research) (14 - 20 weeks)				

1. Global Academy of Technology

(Autonomous Institution under Visvesvaraya Technological University, Belagavi)

An Overview

1.1 Vision of the Institute:

Become a premier institution imparting quality education in engineering and management to meet the changing needs of society.

1.2 Mission of the Institute:

- Create environment conducive for continuous learning through quality teaching and learning processes supported by modern infrastructure.
- Promote Research and Innovation through collaboration with industries.
- Inculcate ethical values and environmental consciousness through holistic education programs.

1.3 Objectives:

- With a very firm resolve, Global Academy of Technology is continuously investing untiring efforts to enable students to:
- Develop careers in Government and Private engineering organizations and other
- professionally related domains.
- Pursue higher studies and research to develop innovative solutions and technologies in engineering and other multi-disciplinary areas.
- Improve professional and personal traits oriented towards professional ethics and environmental compulsions.
- Inculcate professional leadership and successful entrepreneurship qualities.
- Help society in raising the quality of life.

1.4 Quality Policies:

- Providing Excellent Education Through High Quality, Experienced and Committed Faculty.
- Evolving creative processes for optimal Knowledge and Skill Transfer.
- Building up state-of-the-art infrastructure at par with international standards.
- Creating an environment for holistic personality development and developing

- 1.5 Hallmarks of Global Academy of Technology:
- Proactive management determined to build the institute as a Centre of Excellence in engineering education.
- Qualified and dedicated faculty in all the departments.
- State of the art Infrastructure and up to date laboratory and Library facilities.
- Lush green campus with an environment of tranquillity and harmony.
- Student centric teaching-learning processes banking on Outcome Based Education.
- students' friendly learning atmosphere.
- Emphasis on Project based learning throughout the course.
- Strong Industry-Institute interface with more than twenty Memorandum of Understanding
- (MOUs) signed with leading industries and institutions of repute.
- Indian Institute of Information Technology (IIIT), Allahabad, has signed a MOU for providing internships to students of GAT, research assistance to faculty, and conducting Faculty Development Programs in key areas of IT Big Data, Cloud Computing, Artificial Intelligence, and Machine Learning.
- Mahatma Gandhi University, Kottayam, has signed a MOU to facilitate research in Nano Technology and provide research assistance to faculty of GAT.
- Industrial consultancy is undertaken in many departments.
- Excellent Placement with more than 80% of the eligible students placed in leading IT
- companies, core industries and Start-up companies.
- Holistic and integrated training modules covering communication skills, leadership skills, soft skills and technical skills through professional trainers.
- On campus and off campus internship facilities.
- Robust parent connects and Student counselling system.
- In-house technical skill training programs/add on courses to enhance the employability of the students.
- Strong and growing alumni connect in place

- Exclusive Research and Development, Industry-Institute Interaction Cell and Teaching and Learning Centre in place.
- Rainwater harvesting facility in the campus.

The following academic processes are implemented on a regular basis to sustain a meaningful and proactive teaching-learning environment:

- Emphasis on continuous revision of the curriculum, based on feedback from the students
 - and input from industry, alumni, and other stakeholders.
- Conduction of regular training programmer for faculty, technical & supporting staff.
- Conducting Academic Audit of each department annually.
- Under open electives students have the options to study subjects offered by other departments to augment their interdisciplinary knowledge.
- Students must do value added courses, mandatory courses, certificate courses, and become members of professional bodies, etc.
- Advanced and enrichment courses are offered as Electives during the final year
 UG and PG Degree Programmes.
- Self-Learning is encouraged in students through MOOCs, NPTEL/SWAYAM,
 Coursera, Edex etc. Credit shall be awarded to students for completion of such courses
- 2.0 Department of Aeronautical Engineering

2.1 Vision of the Department:

To emerge as an excellent canter for imparting quality education and research to produce competent Aeronautical Engineers to meet global challenges.

2.2 Mission of the Department:

M1: Empower the students with the fundamental knowledge and skill for a successful career in the field of Aeronautical Engineering and facilitating them to continue their education through higher studies and Research & Development activities.

M2: Providing state of the art laboratories and infrastructure for academics and research in the areas of Aerodynamics, Structures, Propulsion and control systems.

M3: Enhancing industry-institute interaction leading to interdisciplinary research with social concern to become leaders in industries and/or become entrepreneurs with good ethics.

2.3 About the Department:

The Department of Aeronautical Engineering was established in the year 2020, affiliated to VTU, Belagavi, Karnataka, approved by AICTE. The department offers a 4-year undergraduate programme, B.E. in Aeronautical Engineering. The department has a team of highly qualified, dedicated and motivated young and experienced faculties. The Department of Aeronautical Engineering has laboratories catering to students, scholars and faculty members for their academic and research activities. The curriculum is designed to impart engineering knowledge in topics such as Aerodynamics, Aircraft structures, Propulsion, Flight dynamics & Controls and UAVs. Further provision exists to acquire additional engineering knowledge through electives. The department prepares the graduates to undertake design, analysis, experimental and research activities as their careers in aeronautical engineering. The institution is located very close to many leading aeronautical industries (ISRO, NAL, HAL, ADA, ADE etc.) and IT industries which will benefit the students in terms of collaboration.

The department activities are being monitored by the Department Advisory Board (DAB) and Program advisory committee (PAC) whose members are eminent personalities from industries, government organizations and R&D Sectors. The new initiative of establishing Research Centre in Aeronautical Engineering, GAT would provide researchers a good opportunity for enhancing their Research knowledge and Problem-solving.

3 Salient Features of Autonomy

Autonomous institutions occupy pivotal positions and are the key interfaces between the industry and academia. Autonomous institutions can create the key channels required for scientific and industrial research and innovation, inclusive teaching and training, and initiatives to develop the eco system for creating more employment.

Autonomy means freedom and authority in academic matters. Autonomy bestows the teacher with the right to decide what to teach, how to teach, how much to teach and whom to teach.

Autonomy gives the privilege to:

- Run courses relevant to the requirements of industries and society at large.
- Design Teaching-Learning methodologies, Assessment Tools and Methods, and Admission policies.

- Create an eco- system for holistic development of the individuals.
- Build strong academic and industry interface.
- Build the reputation of the institution through quality education.
- Industry relevant value-added courses during vacations.
- Internships in Industry/ R&D establishments in summer holidays.
- Building leadership qualities including spirit of tolerance and teamwork.
- There will be a lot of scope for industry- oriented skill development built-in into the system.
- Deliver engineering graduates who can effectively shoulder the responsibility of building a strong and vibrant INDIA.

GAT has Board of Governance, Academic Council, Boards of Studies, Boards of Examination, Finance Committee, and Institute Steering Committee. Stakeholders in these bodies comprise of Academicians, Researchers, Industry Experts, Faculty and Alumni. Governing Body of the autonomous college lays down policies and procedures for Governance of the college carried out through the principal of the college. Academic Council is the apex academic body of the college responsible for approval of schemes of study, syllabi, examinations and evaluation methods, declaration of results, recommendation of candidates to the University for Award of degrees etc. The college constitutes different Boards of Studies for different branches of engineering. The BOS's are responsible for framing schemes of study and detailed curricula, academic rules etc. Other bodies like Finance Committee, Recruitment Committee help in administration of the college.

3.1 Outcome Based Education (OBE):

Outcome based education (OBE) is student-centered instruction model that focuses on measuring student performance through outcomes. Outcomes include knowledge, skills and attitude. Its focus remains on evaluating the program's outcomes by stating the knowledge, skill and behavior a graduate is expected to attain upon completion and 4 to 5 years after graduation.

The induction of India in the Washington Accord in 2014 with the permanent signatory status of The National Board of Accreditation (NBA) is considered a big leap forward for the higher-education system in India. It means that an Engineering graduate from India can be employed in any one of the other countries who have signed the accord. For Indian Engineering Institutions to get accredited by NBA according to the pacts of the accord, it is compulsory that engineering institutions follow the Outcome Based Education (OBE) model. So, for an Engineering Institution to be accredited by NBA it should compulsorily follow the OBE model.

The OBE model measures the progress of the graduate in three parameters, which are:

- Program Educational Objectives (PEO)
- Program Outcomes (PO)
- Course Outcomes (CO)

Outcome Based Education assesses students' performance, knowledge and skills through quizzes, solving puzzles, giving an online presentation, modelling something, and taking up a multiple-choicece assessment. Assessments are criterion-focused which the students achieve during the learning period. Students are expected to go with the flow and think out of the box to implement – outcome

based education.

Students studying in an accredited program of an institution in India can be confident of getting an education which is of assured quality comparable to global standards. They can compete with their global counterparts for securing jobs in Multi-National Companies and other enterprises across the world. Students can also have global mobility- can work anywhere -in any corner of the globe. In addition, students will have access to the state-of-the-art facility, infrastructure, and access to highly qualified teaching faculty in an accredited program. Students would have acquired "graduate attributes" at the end of the course and will be industry ready. A student can also get into post- graduation and research.

3.2 Advantages of Outcome Based Education:

- Student-cantered It is an approach by which the learner's mastery over a particular skill is demonstrated and measured.
- Clarity in focus A learning outcome must be made obvious to the learner even at the outset of learning. This outcomes-based model works on bringing out the specific outcomes from the learners.
- The curriculum is designed with a clear definition, outlining the expected outcomes. This will pave a way to achieve expanded opportunities in the student's performance.
- Exceeding expectations All students can deliver the highest level of performance. The only kick start needed is to make them believe and encourage, the only way to attain high expectation.
- Expanded opportunities It means giving countless chances and ways to show the students that they have met with their objective. Not all learners learn the same thing, the same way, and at the same time. However, extended opportunities can help achieve high standards. They help students to learn what is mostly needed for the time and hour.

3.3 Program Outcomes (POs) as prescribed by National Board of Accreditation (NBA):

- PO1- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6- The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- PO7- Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- PO9- Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12- Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

3.4 Program Specific Outcomes

PSO1: Apply the fundamental knowledge of Aerodynamics, Propulsion, Structures and Flight controls to solve core contemporary problems.

PSO2: Develop and use modern engineering tools to design and analyze the simple and complex problems in Aeronautical Engineering.

3.5 Some Definitions:

"Course" is a unit of teaching, which encompasses various topics, that typically lasts one semester, is led by one or more faculty and has a fixed registered student. Course means a subject either theory or practical identified by its title and code number.

"Program" – cohesive arrangements of courses, co- curricular extra-curricular activities to accomplish predetermined objectives leading to award of a degree.

"Degree"- Academic award conferred upon a student on successful completion of a program designed to achieve the defined attributes.

3.6 Choice Based Credit System (CBCS):

Major Benefits: Major benefits accruing by adopting the Credit System are listed below:

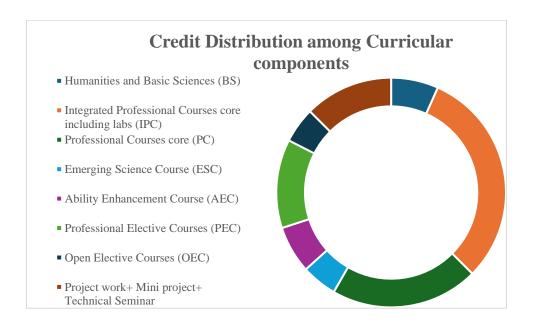
- Quantification and uniformity in the listing of courses for all programmes at a college, like core (hard/soft), electives and project work.
- Ease of allocation of courses under different heads by using their credits to meet national/international practices in technical education.
- Convenience to specify the minimum/ maximum limits of course load and its average per semester in the form of credits to be earned by a student.
- Flexibility in programme duration for students by enabling them to pace their course load within minimum/maximum limits based on their preparation and capabilities.
- Wider choice of courses available from any department of the same College or even from other similar Colleges, either for credit or for audit.
- Improved facility for students to optimize their learning by availing of transfer of credits earned by them from one College to another.

As the Credit System has many advantages over the conventional system of organizing academic programs, GAT has introduced an appropriate Choice Based Credit System (CBCS) for the various programs. This will be of great benefit to the students in their preparations to meet the challenging opportunities ahead. In the Credit System, the

course work of students is unitized, and each unit is assigned one credit after a student completes the teaching-learning process as prescribed for that unit and is successful in its assessment. However, there are different definitions followed in academic circles for the size of a unit and in turn, for a credit.

3.7 Credit Definition:

As it is desirable to have uniformity in the definition of credit across all Autonomous Colleges under the University, the following widely accepted definition for credit shall be followed at GAT. This can provide flexibility to the students and strengthen CBCS under the University. Here, one unit of course work and its corresponding one credit (while referring to a Main Semester) shall be equal to:


- 1) Theory course conducted for 1 hour/week/ semester.
- 2) Laboratory course or Tutorial conducted for 2 hours/week/semester. The following additional factors may also be noted in this connection:
- 3) The above figures shall be multiplied by a factor of 2 in the case of the Supplementary Semester,
- 4) Other student activities which are not demanding intellectually, or which do not lead to effective assessment, like practical training, study tours, attending guest lectures shall not carry any credit.

Audit Courses: In Addition, a student can register for courses for audit only with a view to supplement his/her knowledge and/or skills. Here also, the student's grades will have to be reflected in the Grade Card. These courses shall not be considered in determining the student's academic performance in the semester. In view of this, it may not be necessary for the college to issue any separate transcript covering the audit courses to the registrants at these courses.

For more details on the academic regulations, students are advised to refer Academic Rules and regulations document available on the college website www.gat.ac.in.

3.8. Credit Distribution among Curricular components:

Sl.	Curricular Component	Credits allocated	Percentage of
No.			allocation
1.	Humanities and Basic Sciences (BS)	8	7
2.	Integrated Professional Courses core including labs (IPC)	32	31
3.	Professional Courses core (PC)	20	21
4.	Emerging Science Course (ESC)	6	5
5.	Ability Enhancement Course (AEC)	8	7
6.	Professional Elective Courses (PEC)	12	13
7.	Open Elective Courses (OEC)	9	5
8.	Project work+ Mini project+ Technical Seminar	15	13
9.	Total	110	100

Department of Aeronautical Engineering III – VIII Semester SCHEME AND SYLLABUS

Scheme of UG Autonomous Program – 2023 batch

(3rd to 8th Semester) III SEMESTER

Sl. No.	Course Code	Course Title	Course Type	Teaching Dept.		eachir urs/W	0	F	Examinat	tion	Credits		
INO.	Code				L	T	P	CIE	SEE	Total			
1	MAT23301	Complex variables and probability	BS	MAT	2	2	0	50	50	100	3		
2	ANE23302	Mechanics of Materials	IPC		3	0	2	50	50	100	4		
3	ANE23303	Fluid Mechanics	IPC		3	0	2	50	50	100	4		
4	ANE23304	Aero Engineering Thermodynamics	PC	AE Dept	2	2	0	50	50	100	3		
5	ANE23305	Elements Of Aeronautics	ESC/ETC/PLC		_		3	0	0	50	50	100	3
6	SCK23306	Social Connect and Responsibility	Any Department		0	0	2	100		100	1		
7	ANE23307x	Ability Enhancement Course/Skill Enhancement Course - III	AEC		2	0	0	50	50	100	2		
8	NSK23308 PEK23308	National Service Scheme (NSS) Physical Education (PE) (Sports and Athletics)	МС	NSS coordinator Physical Education Director	0	0	2	100		100	0		
	YOK23308	Yoga		Yoga Teacher									
9	ANEL23309	CADD		AE Dept		0	2	100		100	0		
Total	I							300	300	600	20		

IV SEMESTER

Sl.		de Course Title		Teaching Department (TD)and	Teaching Hours/Week			Exami	nation	C P	
No.	Course Code		Course Type	Question Paper Setting Board (PSB)	L	Т	P	CIE	SEE	Total	Credits
1	MAT23401	Transform Calculus and Numerical Techniques	BS	MAT	2	2	0	50	50	100	3
2	ANE23402	Low Speed Aerodynamics	IPC		3	0	2	50	50	100	4
3	ANE23403	Aircraft Propulsion	IPC		3	0	2	50	50	100	4
4	ANE23404	Aircraft Structures -I	PC	AE Dept	2	2	0	50	50	100	3
5	ANE23405	Aircraft Control Engineering	ESC/ETC/PL C		2	2	0	50	50	100	3

18

Dean Academic Global Academy of Technology, Rajarajeshwarinagar, Bengal 71-98

Total	otal									700	20
8	ANEL23408	Advanced CADD Lab		AE Dept	0	0	2	100		100	0
7	PEK23407 YOK23407	(NSS) Physical Education (PE) (Sports and Athletics) Yoga	MC	Physical Education Director Yoga Teacher	0	0	2	100		100	0
6	ANE23406x NSK23407	Ability Enhancement Course/Skill Enhancement Course - IV National Service Scheme	AEC	NSS	3	0	0	50	50	100	3

V SEMESTER

				Teaching	Te	aching	Hours/W	eek		Examin	ation		
Sl. No	Cour	se Code	Course Title	Department (TD)and Question Paper		ıaı	Practical / Drawing	-	Duratio n in	CIE Marks	SEE Marks	Total	Credits
				Setting Board (PSB)	L	Т	P	S	hours	11111111			
1	HSMS	ANE235 01	Aviation Management		3	0	0		03	50	50	100	3
2	IPCC	ANE235 02	Aircraft Structures -		2	2	2		03	50	50	100	4
3	PCC	ANE235 03	High-Speed Aerodynamics	TD: AE PSB:	3	2	0		03	50	50	100	4
4	PCCL	ANEL23 504	Modelling and analysis lab	AE AE PSB:	0	0	2		03	50	50	100	1
5	PEC	ANE235 05X	Professional Elective – I		3	0	0		03	50	50	100	3
6	PROJ	ANEP23 506	Mini Project		0	0	4		03	100		100	2
7	AEC	RMIK23 507	Research Methodology		3	0	0		03	50	50	100	3
8	MC	CIVK235 08	Environmental Studies	TD:CV/Env/ Chem, PSB:CV	2	0	0		02	50	50	100	2
9	MC	UHK235 09	National Service Scheme (NSS)	NSS coordinator									
		PEK2350 9	Physical Education (PE) (Sports and Athletics)	Physical Education Director	0	0	2			100		100	0
		YOK235 09	Yoga	Yoga Teacher									
10	ANE235 Technical Authoring AE Dept 0 0 2											100	0
	Total											800	22

19

Dean Academic
Global Academy of Technology,
Rajarajeshwarinagar, Bengal 7-98

VI SEMESTER

				Teaching	T	eaching	Hours/We	ek		Examination				
Sl. No	No Code		Course Title		Theory Lecture	Tuto rial T	Practic / Drawi ng P	Self - Stud y	Duratio n in hours	CIE Marks	SEE Marks	Total	Credits	
1	IPCC	ANE23601	Aircraft Design		2	2	2		03	50	50	100	4	
2	PCC	ANE23602	Flight Mechanics		3	2	0		03	50	50	100	4	
3	PEC	ANE23603X	Professional Elective – II	-	3	0	0		03	50	50	100	3	
4	OEC	ANE23604X	Open Elective -I	TD: AE,	3	0	0		03	50	50	100	3	
5	PROJ	ANEP23605	Major Project Phase – I	PSB:AE	0	0	4		03	100		100	2	
6	PCCL	ANEL23606	Flight Simulation Lab		0	0	2		03	50	50	100	1	
7	AEC / SDC	ANE23607X	Ability Enhancement Course/ Skill Development Course – III		1	Th	e is offered a neory 0 ered as a pr		01	50	50	100	1	
		UHK23608	National Service Scheme (NSS)	NSS coordinator	0	0	2			100		100	0	
8	MC	PEK23608	Physical Education (PE) (Sports and Athletics)	Physical Education Director										
		YOK23608	Yoga	Yoga Teacher										
9	IKS	BIKK23609	Indian Knowledge System		1	0	0		01	50	50	100	0	
11	UHV	UHV23511	Universal Human Values		1	0	0		03	50	50	100	0	
								Tot	al	500	300	800	18	

VII SEMESTER

				Teaching		Teaching Ho	ours/Week		E	xaminat	ion		
				Department (TD)and	Theory Lecture	Tutorial	Practical / Drawing				SEE		
Sl. No	Course Code		Course Title	Question Paper Setting Board (PSB)	L	T	P	S	Duration in hus	CIE Mark s	Marks	Total	Credits
1	IPCC A1	NE23701	Avionics and Systems To be Completed in 5 th /6 th Semester		3	0	2		03	50	50	100	4

20

Dean Academic
Global Academy of Technology,
Rajarajoshwarinagar, Bengal 71-98

2	IPCC	ANE23702	Computational Fluid Dynamics To be Completed in the 5 th /6 th Semester	TD: AE, PSB: AE	3	0	2		03	50	50	100	4
3	PCC	ANE23703	Space Mechanics To be Completed in 6th Semester		3	2	0		03	50	50	100	4
4	PEC	ANE23704 x	Professional Elective-III (Online Courses)		3	0	0		03	50	50	100	3
5	OEC	ANE23705 x	Open Elective- II (Online Courses)		3	0	0		01	50	50	100	3
6	PR OJ	ANEP 23706	Major Project Phase-II	TD:AE, PSB:AE	0	0	12		03	100	100	200	6
	Total										300	700	24

VIII SEMESTER

				Teaching Departmen	Teaching Hours/Week			Examination			Credit s		
Sl. No		Course Code	Course Title	t (TD)and Question Paper Setting	Theory Lecture	Tutorial	Practic / Drawing	Self - Stud y	Duration in	CIE Marks	SEE Marks	Tota 1	
			I	Board (PSB)	Board L	Т	P	S	hours	THE IS			
1	PEC	ANE23801x	Professional Elective -IV (Online Courses)	TD: AE, PSB:AE	3	0	0		03	50	50	10 0	3
2	OEC	ANE23802x	Open Elective - III (Online Courses)	TD: AE, PSB:AE	3	0	0		03	50	50	10 0	3
3	INT	ANEI23803	Internship + Technical Seminar (Industry/Researc h) (14 - 20 weeks)	TD:	0	0	12		03	100	100	20 0	10
	Total					200	200	40	16				

*NPTEL for Credit transfer: Students can take 12 weeks NPTEL course as an equivalent to a Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course needs to be completed before the registration of the elective. Any certificate obtained after the registration of elective would not

21

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Global Academy of Technology,

Hir Rajarkeakon Swears

Rajarajoshwarinagar, Bengal ~1-98

be considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The grades will be awarded as equivalent to the grades obtained in the NPTEL course.

Program Elective, Open Elective and Ability Enhancement Course

Ability 1	Ability Enhancement Course/Skill Enhancement Course – III				
Sl. No.	Course Code	Course Title			
1	ANE23307A	Aerospace Materials and Digital Manufacturing			
2	ANE23307B	Development of Soft Skills for Engineers			
3	ANE23307C	Ethics, Technology and Engineering			
4	ANE23307D	Digitalization in Aeronautics			
Ability 1	 Enhancement Course	/Skill Enhancement Course - IV			
Sl. No.	Course Code	Course Title			
1	ANE23406A	AI&ML in Aerospace Applications			
2	ANE23406B	Spreadsheet-Basic for Engineers			
3	ANE23406C	Introduction to programming with MATLAB and Python			
4	ANE23406D	Introduction to Augmented Reality			
Professi	onal Elective Course -	- I*			
Sl. No.	Course Code	Course Title			
1	ANE23505A	Finite Element Methods			
2	ANE23505B	Aero Propulsion-II			
3	ANE23505C	Helicopter Dynamics			
4	ANE23505D	Airframe Structural Design			
Professi	onal Elective Course	- II*			
Sl. No.	Course Code	Course Title			
1	ANE23603A	Composite Materials and Structures			
2	ANE23603B	Rockets and Missiles			
3	ANE23603C	Guidance & Control			

22

Dean Academic
Global Academy of Technology,
Rajarajeshwarinagar, Bengal *1-98

4	ANE23603D	Flight Testing
Open E	lective Course-I*	
Sl. No.	Course Code	Course Title
1	ANE23604A	Introduction to Aeronautics
2	ANE23604B	History of aviation
3	ANE23604C	Airport planning and management
4	ANE23604D	Introduction to Flight Simulator
Ability 1	Enhancement Course / Skill	Enhancement Course –V
Sl. No.	Course Code	Course Title
1	ANE23607A	System Engineering for Aeronautical Engineers
2	ANE23607B	Virtual Aircraft Simulation
3	ANE23607C	Introduction to Swarm Drone
4	ANE23607D	Multi-disciplinary Research in Aeronautical Engineering
Professi	onal Elective Course-III*	
Sl. No.	Course Code	Course Title
1	ANE23704A	Aircraft Maintenance, Repair and Overhaul
2	ANE23704B	Wind Tunnel Techniques
3	ANE23704C	Theory of Vibration
4	ANE23704D	Civil Aviation Rules and Regulation
Open E	lective Course-II*	
1	ANE23705A	Drone Technology
2	ANE23705B	Air Traffic and Weather
3	ANE23705C	Space Technology
4	ANE23705D	Aviation and Internet Infrastructure
4	ANE23705D	Aviation and Internet Infrastructure

23

Dean Academic
Global Academy of Technology,
Rajarajoshwarinagar, Bengal 7-98

SEMESTER – III SYLLABUS

SEMESTER – III SYLLABUS

COURSE: COMPLEX VARIABLES AND PROBABILITY (COMMON FOR ME/AE)

Course Code	MAT23301	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of mathematics in the field of engineering by making them to learn:

CLO1	Analytic functions and complex line integrals
CLO2	Probability distributions
CLO3	Joint probability distributions
CLO4	Sampling distributions and testing of hypothesis

Content	No. of Hours/ RBT levels
Module 1 Function of complex variables, Analytic functions, Cauchy-Riemann equations, construction of analytic functions using Milne Thomson method, Properties of analytic functions.	08 Hours L2, L3
Module 2 Conformal mapping, Bilinear transformations. Complex line integrals, Cauchy's theorem, Cauchy's integral formula, Singularities, poles, residues, Cauchy's residue theorem.	08 Hours L2, L3
Module 3 Probability, Conditional probability, Bayes theorem, Discrete and continuous random variables, Binomial, Uniform, Poisson, Exponential, Normal distributions.	08 Hours L2, L3
Module 4 Joint distributions of two discrete random variables, Marginal distributions, Expectation and Covariance. Transformation of random variables, Central limit theorem and law of large numbers.	08 Hours L2, L3

Module 5	08 Hours
Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, student's t-distribution, chi-square distribution as a	L2, L3
test of goodness of fit.	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

•	Apply Cauchy Riemann equations in Cartesian as well as in polar coordinates to study properties of analytic functions
•	Apply the Milne-Thomson method to construct analytic functions
•	Define conformal and bilinear transformation and discuss their properties
•	Apply Cauchy's theorem and Cauchy's integral formula to solve problems in complex analysis
•	Apply the residue theorem to evaluate complex line integrals
•	Describe the properties and characteristics of random variables, including their probability distributions, probability mass/density functions, and cumulative distribution functions.
•	Solve problems using binomial, Poisson, exponential and normal distributions
•	Compute joint probabilities, marginal probabilities, and expectations and covariance using joint distributions.
•	Understand the concept of a transformed random variable and the associated probability distributions.
•	Solve problems that involve the use of the central limit theorem and the law of large numbers.
•	Determine the appropriate test statistic (z-test or t-test), Conduct hypothesis tests for population means and proportions, and interpret the results. Conduct chi-square tests of goodness of fit and interpret the results
	•

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers 44th Edition, 2017
- 2. T Veerarajan, Probability, Statistics and Random Processes for Engineers, Tata McGraw Hill, 3rd Edition, 2008

Reference books:

- 1. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006
- 2. N.P.Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications 6 th Edition, 2014
- 3. Richard H Williams, Probability, Statistics and Random Processes for Engineers, Cengage Learning, 1st Edition, 2003.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a

maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini projects / concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	50
CIE	CIE Test-3	40	50
	Assignments	10	
SEE	Semester End Examination	50	50
	Grand Total		100

CO/PO	PO1	PO2	PO3	PO12
CO301.1	3	2	1	3
CO301.2	3	2	1	3
CO301.3	3	2	1	3
CO301.4	3	2	1	3
CO301.5	3	2	1	3
Average	3	2	1	3

Low-1: Medium-2: High-3

SEMESTER - III

COURSE: MECHANICS OF MATERIALS

Course Code	ANE23302	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Mechanics of Material in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To understand the concepts of stress and strain.
CLO2	To study the concept of shearing force and bending moment due to external loads.
CLO3	To determine stresses and deformation under bending and shear load.
CLO4	To determine stresses and deformation in circular shafts due to torsion, also to determine
	deflection in beams.
CLO5	To study the stresses and deformations induced in thin and thick shells.

Content	No. of Hours/ RBT levels
Module 1	
Stresses and Strains: Introduction to Stress, Types of stress, Strain, Types of Strain, Modulus of Elasticity, True Stress, True Strain, Simple problems, Stress Strain Diagram of Ductile, Brittle, Visco- Elastic, Linear & Non-linear Elastic materials, Bars with varying sections, Bars of composite sections, Simple problems, Thermal stresses, Simple problems, Elastic constants and its relation, volumetric stains, Simple problems.	08 Hours
Module 2 Compound Stresses: Methods of Determining stresses in oblique sections, Principal planes and stresses, Simple problems, Construction of Mohr's circle, simple problems. Shear Force and Bending Moment Diagram: Introduction to shear force, bending moment, Types of Beams and loads, sign convention for shear force and bending moment, Shear force and bending moment diagram for various beams. Relation between shear force and bending moment.	08 Hours
Module 3 Bending Stresses and shear stress in Beams: Introduction, Pure Bending and Simple Bending, Expression of Bending stress, Neutral axis and Moment of resistance, bending stress in symmetrical sections, Section modulus, Section modulus for various shapes of the beam section. Introduction to shear stress, shear stress distribution for different section	08 Hours

Module 4 Torsion of Shafts: Introduction to torsion, Derivation of shear stress produced in a circular shaft subjected to Torsion, Expression of Torque in terms of polar moment of Inertia, Power transmitted by shaft, simple problem.	08 Hours
Module 5	
Column and struts: Introduction to columns and struts, Failure of a column, Expression of crippling load when (a) both ends are hinged (b) One end of the column is fixed and the other end is free (c) both ends are fixed (d) One end is fixed and the other end is hinged. Simple problems to be solved used Euler's formula and Rankine formula.	
Thick and Thin cylinders: Thin cylinders subjected to internal pressure. Stresses in a thin cylinder subjected to internal pressure, Expression of circumferential stress and hoop stress, Simple problems Thick Cylinder: Lame's theorem, Stresses in a thick cylinder, Simple problems to be solved.	

LIST OF EXPERIMENTS

- 1. Brinell hardness test on various specimens.
- 2. Rockwell hardness test on various specimens.
- 3. Vicker's hardness test on various specimens.
- 4. Izod test on various specimens using impact-testing machines.
- 5. Charpy test on various specimens using impact-testing machines.
- 6. Preparation and study of the Microstructure of pure metals Mild Steel, Low Carbon steel and High Carbon Steel.
- 7. To study the defects of cast and welded components using non-destructive tests:
- a. Magnetic crack detection.
- b. Dye penetration testing.
- 8. Tensile test of metallic and non-metallic specimen using Universal Testing Machine.
- 9. Compression test of metallic and non-metallic specimen using Universal Testing Machine.
- 10. Shear and Bending tests of metallic and non-metallic specimen using Universal Testing Machine.
- 11. Torsion test on metallic specimen using torsion testing machine.
- 12. To study the wear characteristics of metals and non-metal materials under different parameters.
- 13. Fatigue Test (demonstration only).

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO302.1	Understand and apply the principles of stresses and strains.					
CO302.2	Proficient in determining stresses in oblique sections and analysing principal					
	planes and stresses					

CO302.3	Demonstrate a deep understanding of Bending Stresses and Shear Stress in Beams
	Evaluate torsional behaviour of shaft material and the hardness of the ferrous and non-ferrous materials.
	Analyse the behaviour of columns and struts, understanding the failure of columns, and calculating the crippling load under various conditions. Also, the stress distribution in thick and thin cylinder.

Textbooks:

- 1. R K Bansal, Strength of Materials, Laxmi Publication Pvt Ltd., New Delhi, 2004.
- 2. Ramamrutham, Strength of Materials, Vikas Publication, New Delhi, Eighth edition (2014).
- 3. Gere and Timoshenko, Mechanics of materials, CBS Publishers & Distributors, 2nd edition, 2006.

Reference books:

- 1. Egor P. Popov, Engineering Mechanics of Solids, PHI publications 2nd edition.
- 2. R.c Hibbeler, Mechanics of materials, Pearson publications, 9th edition. 2016
- 3. B.C. Punmia, Ashok Kumar Jain & Arun Kumar Jain, Mechanics of Materials, Laxmi publications, New Delhi, 2006

Web references/ links

https://freevideolectures.com/course/96/strength-ofmaterials

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2		50
	CIE Test-3	30	
	Laboratory	20	
SEE	Semester End Examination	50	50
Grand Total			100

	CO/PO Mapping													
СО/РО	PO1	P02	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO302.1	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO302.2	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO302.3	3	3	2	2	-	-	-	-	1	-	-	1	3	_
CO302.4	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO302.5	3	3	2	2	-	-	-	-	1	-	=	1	3	-
Average	3	3	2	2	-	-	-	-	1	-	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER - III

COURSE: FLUID MECHANICS

Course Code	ANE23303	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Fluid Mechanics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	The properties of fluids and its Characteristic are studied
CLO2	To understand the importance of dimensional analysis
CLO3	The applications of the conservation laws to flow through pipes are studied

CLO4	To understand the importance of Flow Measuring devices.
CLO5	To understand the importance of turbo machines.

Content	No. of Hours/RBT levels
Module 1 Fluids: Introduction, Properties of fluids, Viscosity, Types of fluids, Compressibility and Bulk Modulus.	08 Hours
Fluid Statics: Fluid Pressure at a Point, Pascal's law, Pressure variation in a Static fluid, Absolute, Gauge, Atmospheric and Vacuum Pressures. Simple Manometer and Differential Manometer.	
Module 2 Fluid Kinematics: Types of Fluid Flow, Continuity Equation in 2D and 3D Velocity and Acceleration. Velocity Potential Function and Stream Function, Flow net, Fundamentals of flow visualization streamlines, stream tube, timeline, path lines, streak lines, flow visualization techniques. Vortex Flow - Free and Forced Vortex.	08 Hours
Module 3 Dimensional Analysis: Introduction, Derived Quantities, Dimensions of Physical Quantities, Dimensional Homogeneity, Rayleigh's Method, Buckingham's Π Theorem, Types of Similarities and Dimensionless Numbers, Similitude and model studies.	08 Hours
Module 4 Fluid Dynamics: Introduction, Equation of motion, Euler's equation of Motion, Bernoulli's equation from first principles, limitations of Bernoulli's equation. Venturi meter, Orifice meter, V-Notch and Rectangular notches.	08 Hours
Flow through pipes : Minor Energy losses through pipes. Darcy's and Chezy's equation for loss of head due to Friction in pipes.	
Module 5	
Turbines: Impact of jets - Velocity Triangles Classification of turbines - Working principles - Modern Francis turbine - Kaplan turbine	08 Hours
Pumps: Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies— Velocity triangles - Work done by the impeller.	

LIST OF EXPERIMENTS

1. Determine the flow of fluid using Venturi meter and

- coefficient of discharge of Venturi meter.
- 2. Determine the flow of fluid using Orifice-meter and determine the coefficient of discharge.
- 3. Determine the coefficient of discharge of Notches (V-type and rectangular types)
- 4. Determination of Vane Coefficient for Flat Vane and Semi-circular Vane.
- 5. Determination of Minor Losses in Flow through pipes.
- 6. Determination of Coefficient of Friction of flow in a pipe.
- 7. Experimental Validation of Bernoulli's Equation through Fluid Flow.
- 8. Performance Characteristics of single stage Centrifugal Pump.
- 9. Performance testing of a Single stage Reciprocating Pumps.
- 10. Performance test of a two stage Reciprocating Air Compressor.
- 11. Performance Characteristics of Kaplan Turbine.
- 12. Performance Characteristics of Francis Turbine.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

	Apply Fundamental knowledge to Predict the Properties and Characteristics of fluid.
CO303.2	Understand the Kinematics of fluid flow and Continuity Equation.
	Apply principle of dimensional analysis & similitude to simple engineering problems.
CO303.4	Analyze the Forces and energy for the fluid flow in a conduit and compare the different flow Measuring devices.
CO303.5	Analyse the Performance & efficiency of Turbo machines.

Textbooks:

- **1.** R K Bansal, "Fluid Mechanics and Hydraulic machines", Lakshmi Publications, revised 9th Edition 2015.
- **2.** Frank M. White "Fluid Mechanics", Seventh Edition, McGraw-Hill Companies,Inc. Publications, New York 2011.

Reference books:

- 1. Graebel W.P, "Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2011
- 2. Kumar K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi 2016

Web references/ links

Mod-01 Lec-01 Introduction and Fundamental Concepts – I

Scheme of Examination:

Semester End Examination (SEE):

marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. The average of the three tests are taken for computation of CIE-on a scale of 30, the CIE would also include laboratory evaluation for 20 marks. The laboratory marks of 20 would comprise of 10 marks for regular laboratory assessment to include lab record and observation. 10 marks would be exclusive for laboratory internal assessment test to be conducted at the end of the semester

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	8 8	0	
	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2		50
	CIE Test-3	30	
	Laboratory	20	
SEE	Semester End Examination	50	50
Grand Total		100	

CO/PO Mapping														
СО/РО	PO1	P02	P03	PO4	PO5	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO303.1	3	3	1	2	-	-	-	1	2	2	-	1	3	-
CO303.2	3	3	1	2	-	-	-	1	2	2	-	1	3	-
CO303.3	3	3	1	2	-	-	-	1	2	2	-	1	3	-
CO303.4	3	3	1	2	-	-	-	1	2	2	-	1	3	-
CO303.5	3	3	1	2	-	-	-	1	2	2	-	1	3	-
Average	3	3	1	2	-	-	-	1	2	2	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER – III

COURSE: AERO ENGINEERING THERMODYNAMICS

Course Code	ANE23304	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Learning Objectives: To enable students to apply the knowledge of

CLO1	Basic knowledge on the fundamental concepts of thermodynamics
CLO2	The First law of thermodynamics and its application in Various flow systems
CLO3	The second law of thermodynamics applies to systems and the concept of entropy.
CLO4	Basic knowledge on standard air cycles
CLO5	To get exposure to the basic concepts of Heat and Mass transfer.

Aero Thermodynamics in broad domain of Aeronautical Engineering by making them to learn:

Content	No. of Hrs /RBT Levels	
Module-1 Fundamental Concepts: Continuum and macroscopic approach; Thermodynamic Systems: open, closed and isolated; Thermodynamic properties and equilibrium; State of a system, state postulate for simple compressible	08Hours	
substances, state diagrams, paths and processes on state diagrams; zeroth law of thermodynamics; concept of temperature. Module-2		
First Law of Thermodynamics: Concept of energy and various forms of energy; concepts of heat and work, different modes of work; internal energy, enthalpy; specific heats; first law applied to elementary processes, closed systems and control volumes, steady flow analysis of nozzles, diffusers, throttling devices, mixing, turbines and compressors; unsteady flow analysis.	08 Hours	
Module-3 Second Law of Thermodynamics and Entropy: Limitations of the first law of thermodynamics, concepts of heat engines and heat pumps/refrigerators, Kelvin-Planck and Clausius statements and their equivalence; reversible and irreversible processes. Carnot cycle and Carnot theorems; thermodynamic temperature scale; Clausius inequality and concept of entropy; the principle of increase of entropy, T-s diagrams; availability and irreversibility		
Module-4 Air Standard Cycles: Otto, Diesel, Dual, Ericsson, Atkinson, Stirling and Brayton cycles - air standard efficiency - Mean effective Pressure.	08 Hours	
Module-5 Basics of Heat and Mass Transfer: Modes of heat transfer, Basic laws governing Heat transfer, combined heat transfer mechanism. Boundary	08Hours	

conditions of 1st, 2nd and 3rd kind. Introduction to mass transfer, definition and	
terms used in mass transfer, Fick's law of diffusion, Numerical.	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO304.1	Apply the laws of thermodynamics in various engineering problems. (L3)
CO304.2	Identify thermodynamic work and heat (L3)
CO304.3	Analyze the feasibility of design variables using thermodynamics principles. (L4)
CO304.4	Analyze the different types of air standard cycles. (L4) heat
CO304.5	Identify the modes of heat transfer involving several heat transfer mechanisms. (L3)

Textbooks:

- 1. Yunus A. Cengel and Michael A. Boles, "Thermodynamics: An Engineering Approach" 9th ed., McGraw Hill Publishing Company Limited.
- 2. Yunus A Cengel, Heat and Mass Transfer A Practical Approach, 5th ed., McGraw Hill Publishing Company Limited.
- 3. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2013.
- 4. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", Prentice-Hall India, 2005.

Reference books:

- 1. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 2007.
- 3. Merala C, Pother, Craig W, Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGraw-Hill, New Delhi, 2004.
- 4. Ramalingam K.K. "Thermodynamics", Sci-Tech Publications, 2006
- 5. Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.
- 6. Incropera, DeWitt, "Fundamentals of Heat and mass transfer", John Wiley and Sons, 6 th Edition, 2005.
- 7. Hegde, R.K., Heat and Mass Transfer Basic Approach, Sapna book House, Bangalore

Web references/ Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101/104/101104067/
- 2. https://nptel.ac.in/courses/101/104/101104067/
- 3. https://nptel.ac.in/courses/101/104/101104067/
- 4. https://nptel.ac.in/courses/101/104/101104067/
- 5. https://nptel.ac.in/courses/101/104/101104067/
- 6. https://nptel.ac.in/courses/112201097/

Practical knowledge references

- 1. https://www.youtube.com/watch?v=suuTC9uGLrI
- 2. https://www.youtube.com/watch?v=suuTC9uGLrIhttps://www.youtube.com/watch?v=7bJywbP7ZIU
- 3. https://www.youtube.com/watch?v=7OJGZHrbD8
- 4. https://www.youtube.com/watch?v=7bJywbP7ZIU
- 5. https://www.youtube.com/watch?v=7bJywbP7ZIUhttps://www.youtube.com/watch?v=2vHLJjlinjw
- 6. <a href="https://www.youtube.com/watch?v=Juz9pVVsmQQhttps://www.youtube.com/watch?v=Juz9pVvsmQQhttps://www.youtube.com/watch?v=Juz9pVvsmQQhttps://www.youtube.com/watch?v=Juz9pVvsmQQhttps://www.youtube.com/watch?v=Juz9pVvsmQQhttps://www.youtube.com/watch?v=Juz9pVvsmQQhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.com/watch?v=Juz9pvsmQqhttps://www.youtube.co
- 7. https://www.youtube.com/watch?v=L1AHGHRvv9s Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern for regular courses is shown in Table 1.

Table1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total				
			Marks				
	CIE Test-1	40					
CIE	CIE Test-2		50				
	CIE Test-3						
	Quiz 1/AAT	10					
SEE	Semester End Examination	50	50				
	Grand Total						

CO/PO Mapping														
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	9010	2011	2012	SO1	2SO2
CO304.1	3	2	-	-	-	-	1	-	1	1	-	1	3	-

CO304.2	3	2	-	-	-	-	1	-	1	1	-	1	3	-
CO304.3	3	2	2	-	-	-	1	-	1	1	-	1	2	-
CO304.4	2	2	2	-	-	-	1	-	1	-	-	1	3	-
CO304.5	3	2	-	-	-	-	1	-	1	1	-	1	3	-
Average	3	2	-	-	-	-	1	-	1	1	-	1	3	-

SEMESTER – III

COURSE: ELEMENTS OF AERONAUTICS

Course Code	ANE23305	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to Aeronautical Engineering in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Understand the Historical evaluation of Airplanes & different structures & construction
CLO2	Understand the basic properties and principles behind the flight
CLO3	Study the various types of power plants used in aircrafts
CLO4	Study of the aircraft Stability
CLO5	Study the different component systems and functions

Content	No. of Hours/ RBT levels
Module 1	
Introduction to Aircrafts History of aviation; Atmosphere and its properties; Classification of aircrafts; Basic components of an aircraft; structural members; aircraft axis system; aircraft motions; control surfaces and high lift devices; conventional design configurations; Helicopters, their parts and functions. Aircraft Structures and Materials Introduction; general types of construction; monocoque, semi monocoque and geodesic structures; typical wing and fuselage structure; metallic and non-metallic materials for aircraft application.	08 Hours L3

Module 2	
Aerodynamics	
	08 Hours
groundspeed; Bernoulli's theorem; forces over wing section, aero foil	L3
nomenclature, pressure distribution over a wing section. Lift and drag	
components, lift curve, drag curve, types of drag, factors affecting lift and drag;	
Centre of pressure and its significance; aerodynamic Centre, aspect ratio, Mach	
number and supersonic flight.	
Module 3	
_	08 Hours
Aircraft power plants, classification based on power plant and principle of	L3
operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets;	
performance characteristics. Aircraft power plants – basic principles of piston,	
turboprop and jet engines; Brayton cycle and its application to gas turbine engines;	
use of propellers and jets for production of thrust; comparative merits and	
limitations of different types of propulsion engines; principle of thrust	
augmentation.	
Module 4	00 11
· · · · · · · · · · · · · · · · · · ·	08 Hours
Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral and	L3
roll stability; necessary conditions for longitudinal stability; basics of aircraft control systems. Performance of aircraft – power curves, maximum and minimum	
speeds for horizontal flight at a given altitude; effect of changes in engine power	
and altitude on performance; correct and incorrect angles of bank; aerobatics.	
and artitude on performance, correct and incorrect angles of bank, acrobatics.	
M. J. J. 5	
Module 5	10 11
Aircraft Systems Mechanical systems and their components; hydraulic and pneumatic systems;	10 Hours L3
oxygen System; environmental Control System; fuel system. Electrical systems,	L3
flight deck and cockpit systems; navigation system, communication system. Flight	
control system, cockpit instrumentation and displays; communication systems;	
navigation systems; power generation systems – engine driven alternators,	
auxiliary power Module, ram air turbine; power conversion, distribution and	
management.	

	Learn the history of aircraft & developments over the years, acquire knowledge
	on Aircraft differentiate types and constructions
CO305.2	Understand the basic concepts of flight & Physical properties of Atmosphere
CO305.3	Understand the Different types of Engines and principles of Rocket
CO305.4	Understand the Basics of aircraft Stability
CO305.5	Ability to identify the types & classifications of components and control systems

Textbooks:

- 1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition, 2015
- 2. Handbooks of Airframe and Power Plant Mechanics, US dept. of Transportation, Federal, Aviation Administration, the English Book Store, New Delhi, 1995.
- 3. Mekinley, J.L. and R.D. Bent, Aircraft Power Plants, McGraw Hill 1993.
- 4. Pallet, E.H.J. Aircraft Instruments & Principles, Pitman & Co 1993.
- 5. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

Reference books:

1. Kermode, A.C. Flight without Formulae, Pearson Education; Eleven edition, 2011 2. McKinley, J.L. and Bent R.D. Aircraft Maintenance & Repair, McGraw Hill, 1993.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total				
			Marks				
	CIE Test-1						
CIE	CIE Test-2	40	50				
	CIE Test-3						
	Quizzes /Assignment	10					
SE	Semester End Examination	50	50				
E							
	Grand Total						

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO305.1	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO305.2	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO305.3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO305.4	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO305.5	3	3	-	-	-	-	-	-	-	-	-	3	3	-

Low-1: Medium-2: High-3

SEMESTER – III

COURSE: SOCIAL CONNECT AND RESPONSIBILITY

Course Code	SCK23306	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	1	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to Aeronautical Engineering in broad domain of Aeronautical Engineering by making them to learn:

_	
CLO1	Provide a formal platform for students to communicate and connect to the
	surrounding.
CLO2	. create a responsible connection with the society.
CLO3	Understand the community in general in which they work.
CLO4	Identify the needs and problems of the community and involve them in problem –
	solving.
CLO5	Develop among themselves a sense of social & civic responsibility & utilize their
	knowledge in finding practical solutions to individual and community problems.
CLO6	. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and
	democratic attitude

Content					
Module 1					
Plantation and adoption of a tree: Plantation of a tree that will be adopted for four years by a group of BE / B.Tech students. (ONE STUDENT ONE TREE) They	08 Hours				
will also make an excerpt either as a documentary or a photo blog describing the	L3				
plant's origin, its usage in daily life, its appearance in folklore and literature					
Objectives, Visit, case study, report, outcomes.					
Module 2	08 Hours				
Heritage walk and crafts corner: Heritage tour, knowing the history and culture of	L3				
the city, connecting to people around through their history, knowing the city and	LS				
its craftsman, photo blog and documentary on evolution and practice of various					
craft forms Objectives, Visit, case study, report, outcomes.					
Module 3	08 Hours				

Organic farming and waste management: Usefulness of organic farming, wet	L3
waste management in neighboring villages, and implementation in the campus-	
Objectives, Visit, case study, report, outcomes.	
Module 4	08 Hours
Water conservation: Knowing the present practices in the surrounding villages	1.3
and implementation in the campus, documentary or photoblog presenting the	LS
current practices – Objectives, Visit, case study, report, outcomes.	
Module 5	08 Hours
Food walk: City's culinary practices, food lore, and indigenous materials of the	1.3
region used in cooking – Objectives, Visit, case study, report, outcomes	LS

CO306.1	Communicate and connect to the surrounding.
CO306.2	Create a responsible connection with the society.
CO306.3	Involve in the community in general in which they work.
	Notice the needs and problems of the community and involve them in problem – solving.
	Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.

SEMESTER-III

ABILITY ENHANCEMENT COURSE

COURSE: AEROSPACE MATERIALS AND DIGITAL MANUFACTURING

Course Code	ANE23307A	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Aircraft Materials and Production in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Learn about the basic properties of the materials used in aerospace industries
CLO2	Know about ferrous and non-ferrous materials used in aerospace industry
CLO3	Understand the significance of composites in aircraft industry
CLO4	Familiarize with the sheet metal and riveting process
CLO5	To study about the additive manufacturing technology

Content	No. of Hours/RBT levels
Mechanical Behavior of Engineering Materials: Introduction to aerospace materials and their classification, Linear and non-linear elastic properties, various material testing machines. Non-ferrous materials in aircraft construction: Aluminum and its alloys: Types and identification. Properties -Castings- Heat treatment processes - Surface treatments. Magnesium and its alloys: Cast and Wrought alloys - Aircraft application, features specification, fabrication problems, Special treatments. Titanium and its alloys: Applications, machining, forming, welding and heat treatment, other alloys used in aircrafts.	08 Hours/ L2
Module 2 Aircraft Composites: Polymer composites, metal matrix composites and ceramic composites in aerospace industry-Basics, Types, significance, properties, advantages, disadvantages and application in aero industry. C-C composites, ablative materials, Ultra high temperature ceramics. Composite repairing.	08 Hours/ L2
Module 3 Sheet Metal Processes in Aircraft Industry Sheet metal operations: shearing, punching, super plastic forming; operations in bending like stretch forming spinning drawing. Riveting, types and techniques, equipment, fasteners, integral tanks, Jigs and Fixtures.	08 Hours/ L2
Module 4 Additive Manufacturing Technology: Principle, Advantages of additive manufacturing, General limitation of additive manufacturing, development of additive manufacturing technology: Lasers, Printing Technologies, Programmable Logic Controllers, Materials, Computer Numerically Controlled Machining. Fused deposition Modeling (FDM): Principle, details of processes.	10 Hours/ L2
Module 5 Solid Based Additive Manufacturing Systems: Fused deposition Modeling (FDM): Principle, details of processes. Liquid Based Additive Manufacturing Systems: Stereolithographic Apparatus (SLA): Principle. Powder Based Additive Manufacturing Systems: SLS process description, Powder fusion mechanisms	08Hours/ L2

CO307A.1	Apply knowledge to grasp the fundamental properties of aerospace materials.
CO307A.2	Analyze and select appropriate composites for specific aircraft applications
	Differentiate and describe the sheet metal and fabrication processes employed in the aircraft industry.

	Comprehensively analyze additive manufacturing processes and their applications in aerospace.
CO307A.5	Comprehend the additive manufacturing processes

Textbooks:

- 1. Aircraft Material and Processes Titterton G F Lienhard V English Book Store, New Delhi 5th Ed.,1998
- 2. S. Kalpakjian, Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley, 5th Edition, 1991.
- 3. Gibson 1 D. W. Rosen 1 B. Stucker, Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.

Reference books:

- 1. Autar Kaw, Mechanics of Composites, CRC Press, II edition, 2006
- 2. O. P. Khanna, M. Lal, "Production technology", Dhanpat Rai Publications, 5th Edition, 1997

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	otal		100

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	_	-	-	-	_	-	-	_	-	_	2	-
CO307A.2	3	2	_	_	-	-	_	_	-	_	-	_	2	-
CO307A.3	3	2	_	_	-	-	_	-	-	_	-	_	2	-
CO307A.4	3	2	_	_	-	-	_	_	-	_	-	_	2	-
CO307A.5	3	2	-	-	_	-	_	_	_	_	_	_	2	-
Average	3	2	-	-	-	-	-	-	-	_	-	_	2	-

Low-1: Medium-2: High-3

SEMESTER-III

ABILITY ENHANCEMENT COURSE

COURSE: DEVELOPMENT OF SOFT SKILLS FOR ENGINEERS

Course Code	ANE23307B	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	Understand the significance of soft skills for engineers
CLO2	Acquire verbal and non-verbal communication skills
CLO3	Get the essence of personal and professional leadership skills

Content	No. of Hours/RBT levels
Module 1	
Foundations of everyday leadership, Emotional intelligence, Leadership and	
collaborative abilities, Listening skills, Research and analytical skills	08Hours
Module 2	
Verbal and non-verbal communication, Stress Management and Tolerance,	
Email Writing, Public speaking and presentation	08 Hours
Module 3	
Negotiation skills, and diffusing project conflict, managing project risks and	

changes, scope, time and cost management, Strategic Planning	08 Hours
Module 4	
Creativity and vision, Problem-solving, writing code and cross-functional skil	į
digital product management	
	08 Hours
Module 5	
Adaptability and staying positive, Applications of everyday leadership,	
Teamwork and people skills	08Hours

CO307B.1	Apply soft skills for engineering profession.
CO307B.2	Practise both verbal and non-verbal communication skills effectively.
CO307B.3	Use personal and professional leadership skills

Suggested Learning Resources: Books

- 1. Fast-Tracking Your Career: Soft Skills for Engineering and IT Professionals 1st Edition by Wushow Chou (Author)
- 2. Soft Skills 3rd Edition: Personality Development for Life Success Paperback 30 October 2021 by Prashan Sharma (Author)

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
CIE	CIE Test-1 CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50

Grand Total	100

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	-	-	-	_	-	-	-	-	-	_	2	-
CO307A.2	3	2	-	-	-	_	-	-	-	-	-	_	2	-
CO307A.3	3	2	-	-	-	-	-	-	-	-	-	_	2	-
CO307A.4	3	2	-	-	-	-	-	-	-	-	-	_	2	-
CO307A.5	3	2	_	_	_	_	_	-	_	_	_	_	2	-
Average	3	2	-	_	-	_	_	-	-	_	-	_	2	-

Low-1: Medium-2: High-3

SEMESTER-III

ABILITY ENHANCEMENT COURSE

COURSE: ETHICS, TECHNOLOGY AND ENGINEERING

Course Code	ANE23307C	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	Learn ethical values in engineering
CLO2	Understand how ethics are followed in technology and engineering.
CLO3	Share the ethical practices

Content	No. of Hours/RBT levels
Module 1 Moral sensibility: the ability to recognize social and ethical issues in engineering	08Hours
Module 2	
Moral analysis skills: the ability to analyse moral problems in terms of facts,	
values, stakeholders and their interests;	08 Hours

Module 3 Moral creativity: the ability to think out different options for action in the light of (conflicting) moral values and the relevant facts;	08 Hours
Module 4 Moral judgement skills: the ability to give a moral judgement on the basis of different ethical theories or frameworks including professional ethics and common sense morality;	08 Hours
Module 5 Moral decision-making skills: the ability to reflect on different ethical theories and frameworks and to make a decision based on that reflection.	08Hours

CO307C.1	Develop Ethical values in engineering and Technology
CO307C.2	Adopt ethical practices
CO307C.3	Assimilate the ethics in Engineering and Technology

Suggested Learning Resources: Books

- 1. Ethics, Technology and Engineering, An Introduction-Wiley-Blackwell (an imprint of John Wiley & Sons Ltd)
- 2. Ethics in Engineering | 4th Edition Paperback 1 July 2017by Mike W. Martin (Author)

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks	
	CIE Test-1			
CIE	CIE Test-2	40	50	
	CIE Test-3			

	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total			100

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.2	3	2	-	-	-	-	-	-	-	-	_	_	2	-
CO307A.3	3	2	-	-	-	-	-	-	-	-	_	-	2	-
CO307A.4	3	2	-	-	-	-	-	-	-	-	_	-	2	-
CO307A.5	3	2	-	-	-	-	-	-	-	-	_	-	2	-
Average	3	2	-	-	-	-	-	-	-	-	_	-	2	-

Low-1: Medium-2: High-3

SEMESTER-III

ABILITY ENHANCEMENT COURSE

COURSE: DIGITALIZATION IN AERONAUTICS

Course Code	ANE23307D	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	To become familiar with digitalization in Aeronautics
CLO2	To understand the importance of digitalization
CLO3	To accelerate the learning of digitalization in Aeronautics

Content	No. of Hours/RBT levels
Module 1 Digitalisation and the Future of the Aerospace Industry, Digitization in Production, Human Factors 4.0: Requirements and challenges for humans, teams and organizations	08Hours
Module 2 Managing Maintenance, Repair and Overhaul for Civil Aircraft, The psycho-	

social implications of digitalization, Collaborative Aircraft Design	08 Hours
Module 3 The Significance of Testing concerning Maintenance of Aircraft, Maintenance in the Age of Digitalisation	08 Hours
Module 4 Digital Avionics Networks, Mil-STD, Modeling and Simulation of Aerospace Systems, Digital Models	08 Hours
Module 5 Efficient Order Reduction of Parametric Models, Parametric Model Order Reduction for Structural Analysis	08Hours

CO307D.1	Develop Ethical values in engineering and Technology
CO307D.2	Adopt ethical practices
CO307D.3	Assimilate the ethics in Engineering and Technology

Suggested Learning Resources: Books

- 1. Aerospace and Digitalization: A Transformation Through Key Industry 4.0 Technologies (Springer Briefs in Applied Sciences and Technology) 1st ed. 2021 Edition by Diego Carou (Author)
- 2. Digitalisation in Aeronautics and Space by coursera
- 3. Mastering The Digital World : A Guide To Understanding, Using And Exploiting Digital Media by Peter Cope

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks
CIE Test-1		

CIE	CIE Test-2	40	50	
	CIE Test-3			
	Quizzes /Assignment	10		
SEE	Semester End Examination	50	50	
Grand Total		l l	100	

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	-	_	_	-	-	_	-	-	-	_	2	-
CO307A.2	3	2	-	_	_	-	-	_	-	-	-	_	2	-
CO307A.3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.4	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.5	3	2	-	-	-	-	-	-	-	-	-	_	2	-
Average	3	2	_	_	_	-	-	-	-	_	_	-	2	-

Low-1: Medium-2: High-3

SEMESTER – III

PROFESSIONAL COURSE

COURSE: COMPUTER AIDED AIRCRAFT DRAWING (CAAD)

Course Code	ANEL23309	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	0	Examination Hours	3

Prerequisites: Computer Aided Engineering Drawing.

Course Objectives: To enable students to apply the knowledge of Computer Aided Aircraft Drawing in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Acquire the knowledge of basic commands and tools using CATIA software and produce drawings using orthographic projections.
CLO2	Draw the 3D part Model from the 2D sketches using CATIA software.
CLO3	Develop Part Models and create assembly using CATIA software.
CLO4	Convert Assembly drawing into 2D drafting and generate Bill of materials for assembled drawing.
CLO5	Create exploded views, rendering using CATIA.

Content	No. of Hours/RBT levels
PART-A: INTRODUCTION TO PART DESIGN	15 Hours/ L6
Perform various options of Sketcher environment. GUI of Part Design workbench. Create and Constrain 2D sketches. Create 3D models using Reference Elements.	
Conversion of 2D aeronautical components to 3D parts and sectional views of simple aeronautical components (Detailed 2D part drawings will be given).	
ASSEMBLY DESIGN	
CATIA Assembly. Assembly Relationships	
The Assemble commands and features	
Introduction to assembly drawing:	

Assembly of propeller and hub assembly, Wing assembly, Fuselage assembly, Engine mounts assembly, Landing gear assembly. (Detailed 2D part drawings will be given). Students need to complete at least	10 Hours/ L6
three of the assembly drawings. PART B: DRAFTING	
Creating detailed drawings. Drawing creation. Dimensions, Annotations and Parts Lists. Detailing a drawing. Bill of Materials. Exploded View and rendering	
Conversion of Assembled view to 2D drafting.	

CO309.1	Sketch the orthographic views of machine components from pictorial view.
CO309.2	Develop 3D model of machine parts with the knowledge of Modelling
	Commands.
CO309.3	Build 3D geometric model of assembly by reading the blueprint of each part.
CO309.4	Convert assembled 3D model to 2D drafting, Bill of Materials and of
	components using
	CAD software.
CO309.5	Represent an Exploded view and rendering Environment.

Textbooks:

- 1. K R Gopalakrishna, Machine Drawing in First angle of Projection, Subhas Publications, 23, 2017.
- 2. N. D. Bhatt, Machine Drawing, Charotar Publication, 50th Edition 2016.

Reference books:

- 1. KL Narayana, P Kannaiah, K V Reddy, Machine Drawing, New Age International Publishers, 6th Edition, 2019.
- 2. Sidheshwar, Machine Drawing, <u>Tata McGraw-Hill Education</u>, 33 reprint 2006.
- 3. R. K. Dhawan, Machine Drawing, S Chand Publishing reprint, 2006.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total Marks		
	PART- A	20			
SEE	PART- B	30	50		
	SEE Total				

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	MANUAL /RECORD	20	
CIE	CIE Test-1	30	50
	CIE Total	50	

CO/PO Ma	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO309.1	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO309.2	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO309.3	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO309.4	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO309.5	3	1	3	-	3	-	2	-	-	-	-	-	-	3
Average	3	1	3	-	3	-	2	-	-	-	-	-	-	3

Low-1: Medium-2: High-3

SEMESTER IV SYLLABUS

SEMESTER IV

COURSE: TRANSFORMS CALCULUS AND NUMERICAL TECHNIQUES

Course Code	MAT23401	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Mathematics in various fields of engineering by making them to learn:

CLO1	Laplace Transforms
CLO2	Fourier series and Fourier Transforms
CLO3	Numerical Methods

Content	No. of Hours/
	RBT levels
Module 1 Laplace transforms of elementary functions, Unit-step and Dirac delta functions. Inverse Laplace Transforms, Solution of second order linear differential equations using Laplace transforms.	08Hours
Module 2	
Fourier series of periodic functions, half range Fourier sine and cosine series. Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse	08 Hours
Fourier transforms.	
Module 3	
Solution of algebraic and transcendental equations: Regula-Falsi and Newton-Raphson method. Finite differences: Newton's forward and backward difference formulae. Newton's divided difference formula and Lagrange's interpolation formula. Numerical integration: Simpson's 1/3rd, 3/8th, Weddle's rule.	08 Hours
Module 4	
Numerical solution of ordinary differential equations of first order and first degree using Modified Euler method, Runge-Kutta method of fourth order, Milne's and Adam-Bashforth predictor and corrector methods. Numerical	08 Hours

solution of second order ordinary differential equations: Runge-Kutta method and Milne's method.	
Module 5 One dimensional wave and heat equation. Solution of heat and wave equation by method of separation of variables. Two-dimensional heat flow,	08Hours
Solution of Laplace's equation, Two-dimensional wave equation. Numerical solution of heat and wave equations.	

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers 44th Edition, 2017
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006

Reference books:

- 1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons 10th Edition, 2016
- 2. N.P.Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications 6th Edition, 2014

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO401.1	• Determine Laplace and inverse Laplace transforms of given functions
CO401.1	 Solve linear differential equations using Laplace transforms
CO401.2	 Determine Fourier series including half range sine and cosine series of a given periodic function Determine infinite Fourier transform including sine and cosine transform of a given function.
CO401.3	 Solve algebraic and transcendental equations using Regula-Falsi and Newton Raphson methods. Apply numerical techniques for interpolation of data Evaluate definite integrals using numerical techniques.
CO401.4	• Solve ordinary differential equations of first and second order using single step and multistep numerical methods
CO401.5	 Derive the one-dimensional heat and wave equations and understand their physical meaning. Apply the method of separation of variables to solve one-dimensional heat and wave equations Implement numerical schemes, such as the explicit and implicit methods, to solve the heat and wave equations.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from

each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	50
CIE	CIE Test-3	40	50
	Assignments	10	
SEE	Semester End Examination	50	50
	Grand Total	100	

CO/PO	PO1	PO2	PO3	PO12
CO41.1	3	2	1	3
CO41.2	3	2	1	3
CO41.3	3	2	1	3
CO41.4	3	2	1	3
CO41.5	3	2	1	3
Average	3	2	1	3

Low-1: Medium-2: High-3

SEMESTER IV

COURSE: LOW SPEED AERODYNAMICS

Course Code	ANE23402	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Fluid Mechanics

Course Objectives: To enable students to apply the knowledge of aerodynamics in broaddomain of aeronautical engineering by making them to learn:

CO1	The governing equations of fluid flow for incompressible inviscid flow							
CO2	Understand the concept of superposition of elementary flows for inviscid, incompressible flow							
CO3	Methods for describing airflow around airfoils and calculating Aerodynamic Coefficients							
CO4	Understand the flow behavior over a finite wing and calculating the aerodynamic forces							
CO5	Viscous Flow: boundary layer, velocity profile, thickness and friction coefficient.							

Content	No. of Hours/ RBT levels
Module 1	
REVIEW OF BASIC DEFINITIONS & EQUATIONS: Importance of Aerodynamics, Fundamental aerodynamics, variables and dimensional analysis leading to Forces & Moments coefficient and dimensionless similarity parameters such as Reynolds number, Mach number, Incompressible flow, Compressible flow and Types of Flows. Models of the Fluid: Control volume, and Fluid Elements. Continuity, Momentum and Energy Equations.	08Hours
Module 2	
INVISID, INCOMPRESSIBLE FLOW: Path lines, Streamlines, Streak lines, Angular Velocity, Vorticity, Stream Function and Velocity Potential function and Circulation. Basic flows — Uniform parallel flow, Source and Sink, Doublet, Vortex Flow and Combinations of basic flows. Non lifting flow and Lifting flow over circular cylinder, Kutta Joukowski's theorem and generation of lift. D' Alembert Paradox and Magnus effects.	08 Hours
Module 3	
INCOMPRESSIBLE FLOW OVER AIRFOILS: Complex potential, methodology of conformal transformation, Blasius theorem, Kutta condition, Airfoils Nomenclature and NACA series, Airfoil Characteristics, Stall condition and Flow separation. Vortex sheet, Kelvin Circulation theorem and the Starting Vortex. Classical Thin airfoil theory: The Symmetrical airfoil and its applications.	08 Hours

Module 4 INCOMPRESSIBLE FLOW OVER FINITE WING: Introduction to Finite wing, Downwash and Induced Drag, Vortex Filament, the Biot -Savart law and Helmholtz's theorems, Horseshoe vortex, Prandtl's Classical Lifting line theory and its limitations, Elliptical lift distribution.	08 Hours
Module 5 VISCOUS FLOW: Boundary layer, Laminar & Turbulent layer, Boundary layer Thickness, Displacement Thickness, Momentum Thickness, Energy Thickness, Boundary layer equation for a steady, two-dimensional incompressible flow, Boundary layer growth over a Flat Plate, Blasius Solution.	08Hours

LIST OF EXPERIMENTS

	•
1	Wind tunnels and its Specifications
2	Calibration of a Low Subsonic Speed Wind Tunnel
3	Smoke flow visualization on a Two-Dimensional Circular Cylinder At various air Speeds
4	Smoke flow visualization studies on a two-dimensional symmetric airfoil at different angle of incidence
5	Smoke flow visualization studies on a two-dimensional cambered airfoil at different angle of incidence
6	Tuft flow visualization studies on a two-dimensional airfoil at different angle of incidence at low speeds
7	Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag
8	Surface pressure distributions on a two-dimensional symmetric airfoil at low speeds and calculation of pressure drag
9	Surface pressure distributions on a two-dimensional cambered airfoil at various angles of attack and calculation of pressure drag
10	Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey
11	Calculation of Total drag of a three-dimensional rough circular cylinder/sphere at low speeds using pitot-static probe wake survey
12	Calculation of Total drag of a two-dimensional symmetrical airfoil at low speeds using pitot-static probe wake survey

13	Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness
14	Calculation of aerodynamic coefficients and forces acting on a model aircraft using 6 -component force balance at various angles of incidence and speed

CO402.1	Apply the Fundamental Conservative Principles of Nature to Obtain the Governing Equations in Fluid Flows.
CO402.2	Calculate the Basic Flow Properties of 2 - D geometries by using Potential flow theory and Superposition Principles.
CO402.3	Determine the Aerodynamic force and Moment coefficients using Thin airfoil theory.
CO402.4	Analyze the Lift and Drag Forces of a Finite wing using Lifting Line Theory.
CO402.5	Understand the Transport Properties of fluid due to Viscosity, Thermal Conductivity and Mass Diffusivity.

Textbooks:

- 1. **J. D. Anderson**, "Fundamentals of Aerodynamics", 5th Edition, McGraw HillEducation India Private Limited, 2010.
- 2. L J Clancy,"Aerodynamics" Paperback 2006

Reference books:

- 1. E. L. Houghton, "Aerodynamics for Engineering students", 6th edition, Elsevier, 2012.
- 2. **Ethirajan Radhakrishnan**, "Theoretical Aerodynamics", 1st Edition, Wiley Publications, 2013.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. Marks scored in each test is reduced to 30 and added to test component.

CIE is executed by way of Three tests.

Laboratory CIE is conducted for 20 Marks and Added to CIE component

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	30
	CIE Test-3	40	1
	LAB CIE	20	20
SEE	Semester End Examination	50	50
	100		

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2
CO1	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO2	3	3	2	2	2	-	-	_	-	-	-	1	3	2
CO3	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO4	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO5	3	3	2	2	2	-	-	-	-	-	-	1	3	2
Average	3	3	2	2	2	-	-	-	-	-	-	1	3	2

Low-1: Medium-2: High-3

SEMESTER – IV

COURSE: AIRCRAFT PROPULSION

Course Code	ANE23403	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Learning Objectives: To enable students to apply the knowledge of Aircraft Propulsion in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Basic knowledge on the classifications of aircraft engines, their operations, fundamental components and their functions in engines.
CLO2	The functions of inlets and nozzles for subsonic and supersonic flow regimes.
CLO3	The basic operation of compressors, their types, the design of compressor blades, and their performance characteristics.
CLO4	The process of combustion, types of combustion chambers, and their respective applications
CLO5	To understand the turbine, their limitations, design of turbine blades, their performance and cooling methods.

CONTENT	No. of Hrs /RBT Levels
MODULE 1	
FUNDAMENTALS OF AIR BREATHING ENGINES	
Classification of aircraft power plants, Principles of aircraft propulsion, working of gas	08Hours
turbine engines, Thermodynamic cycle analysis, thrust equation, Factors affecting thrust,	
Methods of thrust augmentation, Performance characteristics of gas turbine engines and	
their comparisons, Numerical Problems	
MODULE 2	
INLETS AND NOZZLES	
Internal flow and Stall in Subsonic inlets, Boundary layer separation, Major features of external flow near a subsonic inlet, Diffuser performance. Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration, Modes of inlet operation, Numerical Problems Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles, Convergent Divergent nozzle, nozzle choking, Nozzle throat conditions, Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, thrust reversal, Thrust Vectoring, Numerical Problems	08 Hours
MODULE 3	
COMPRESSORS: Centrifugal compressors: Operation of centrifugal compressors, Work done and pressure rise, Velocity diagrams, Diffuser vane design considerations, performance characteristics. Axial flow compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction,	08 Hours

Compressor blade design, Axial compressor performance characteristics,	
Numerical Problems	
MODULE 4	
COMBUSTION CHAMBERS: Classification of combustion chambers,	
Combustion process, Important factors affecting combustion chamber design,	
Combustion chamber performance, Effect of operating variables on performance –	08 Hours
Flame tube cooling – Flame stabilization – Use of flame holders	
<u> </u>	
MODULE 5	
TURBINES: Turbine stage, multi-staging of turbine, Principle of operation of axial	
flow turbines, Work done and pressure rise, Velocity diagrams, Degree of reaction,	08Hours
Stage efficiency calculations, Basic blade profile design considerations, Turbine	
blade cooling methods, Matching of compressor and turbine, Numerical Problems	
orace cooming methods, watering or compressor and turbine, remerican reoblems	

LIST OF EXPERIMENTS

Ex. No	Title of Experiment				
1	Study of an aircraft piston engine. (includes the study of the assembly of subsystems, various components, their functions, and operating principles).	L4			
2	Study of an aircraft jet engine (includes the study of the assembly of subsystems various components, their functions, and operating principles).	L4			
3	Study of free convective heat transfer over a surface.	L4			
4	Study of forced convective heat transfer over a surface.	L4			
5	Determination of Performance characteristics of a fixed/variable pitch propeller.	L4			
6	Flame Stabilization Studies using the conical flame holder.	L4			
7	Measurement of burning velocity of the premixed flame	L4			
8	Pressure measurement in Ramjet engine	L4			
9	Temperature measurement in Ramjet Engine	L4			

10	Measurement of Pressure and velocity distribution over the compressor cascade	L4
11	Measurement of Pressure and velocity distribution over the turbine cascade	L4
12	Performance studies on mini gas turbine engines	L4

CLO403.1	Explicate the principles of operation of aircraft propulsion and the fundamental
	components and their functions in engines.
CLO403.2	Realize the functions of the aircraft inlet and nozzle, their advantages and limitations.
CLO403.3	Assess the compressor's efficiency based on the blade design and the pressure requirements.
	Examine the processes of combustion and combustor and choose the suitable chamber
	based on their applications.
CLO403.5	Design the turbine stage and turbine blade angles based on the requirements of the compressor.

Textbooks:

- 1. P.G. Hill and C.R. Peterson, "Mechanics & Thermodynamics of Propulsion", Addison Wesley Longman INC, 2015.
- 2. M. L. Mathur and R. P. Sharma, "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014
- 3. Ahmed F. EL-Sayed, "Aircraft Propulsion and Gas turbine engines", CRC press, 2017.

Reference books:

- 1. Cohen, H. Rogers, G.F.C. and Saravana muttoo, H.I.H. "Gas Turbine Theory", Longman, 1989.
- 2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985.
- 3. Rathakrishnan., E, "Gas Dynamics", Fifth edition Published by PHI Learning, 2014.

Web references/ Additional online information (related to module if any):

- 1. https://onlinecourses.nptel.ac.in/noc22 me125/preview
- 2. https://archive.nptel.ac.in/courses/101/101/101101002/

Practical knowledge reference

1. https://www.linkedin.com/posts/thuwin_aerospace-engineering-job-activity-7081738421739614208-q2me

- 2. https://www.infosys.com/services/engineering-services/service-offerings/turbomachinery-propulsion.html
- 3. https://www.youtube.com/watch?v=PcPBYh6Cfao

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern for regular courses is shown in Table 1.

Table1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks			
	CIE Test-1	••				
CIE	CIE Test-2	30	50			
CIE	CIE Test-3		50			
	Laboratory	20				
SEE	Semester End Examination	50	50			
	Grand Total					

COURSE OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CLO403.1	3	2	2	-	-	-	-	-	-	1	-	1	3	-
CLO403.2	3	2	2	-	-	-	-	-	-	1	-	1	3	-
CLO403.3	3	2	2	-	-	-	-	-	-	1	-	1	2	-
CLO403.4	2	2	2	-	-	-	-	-	-	1	-	1	3	-
CLO403.5	3	2	2	-	-	-	-	-	-	1	-	1	3	-
Average	3	2	2	-	-	-	-	-	-	1	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER - IV

COURSE: AIRCRAFT STRUCTURES-I

Course Code	ANE23404	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Aircraft Structures-I in broad domain of Aeronautical Engineering by making them to learn:

	Understand the types of loads experienced by aircraft structure and materials used for aircraft structures
	Acquire knowledge on different methodologies to analyze statically determinate and indeterminate structures under various loading conditions
CO3	Apply the energy method concept to determine the strain energy using various methods
CO4	Discuss about the theory of failure for aircraft structures
CO5	Solve aircraft structural problems to determine the deflection of beams.

Content	No. of Hours/ RBT levels
Module 1 Statically Determinate & Indeterminate Structures: Plane truss analysis – method of joints – method of sections – method of shear – 3-D trusses – principle of super position, Clapeyron's 3 moment equation and moment distribution method for indeterminate beams	08Hours
Module 2 Energy Methods: Strain Energy in axial, bending, torsion and shear loadings. Castigliano's theorems and their applications. Energy theorems – dummy load & unit load methods – energy methods applied to statically determinate and indeterminate beams, frames, rings & trusses.	08 Hours
Module 3 Deflection of Beams: Deflection of beams using Double integration method, McCauley's method, Area moment method, Conjugate beam method, Maxwell reciprocal theorem.	UA FIORES
Module 4	

Failure Theories: Ductile and brittle materials – maximum principal stress theory - maximum principal strain theory - maximum shear stress theory - distortion energy theory – octahedral shear stress theory	
Module 5	
Theory of Elasticity: Concept of stress and strain, derivation of Equilibrium equations, strain displacement relation, compatibility conditions and boundary conditions. Plane stress and Plane strain problems in 2D elasticity. structural health monitoring of aircraft.	08Hours

CO404.1	comprehensive understanding of aircraft structures, encompassing topics such as structural layout, major components, loads
CO404.2	Proficiently apply different methodologies to analyze statically determinate and indeterminate structures under various loading conditions
CO404.3	Apply strain energy principles in diverse loadings and effectively utilize Castigliano's theorems and its applications
CO404.4	Apply advanced material theories for optimal material selection and structural design under varying loading conditions.
CO404.5	Solve aircraft structural problems to determine the beam deflections

Textbooks:

- **1.** 'Mechanics of Materials' by James M. Gere & Barry J Goodno, cengage Learning Custom Publishing; 8th edition, 2012.
- **2.** Megson T M G, 'Aircraft Structures for engineering students' Butterworth-Heinemann publisher, 5th edition, 2012.
- **3.** N.C. Pandya, C.S. Shah, "Elements of Machine Design", Charotar Publishing House, 15th edition, 2009.

Reference books:

- 1. Bruhn E F, 'Analysis and Design of Flight Vehicle Structures', Tri-State Off-set Company, USA, 1985
- 2. Donaldson, B.K., 'Analysis of Aircraft Structures An Introduction' Cambridge University Press publishers, 2nd edition , 2008
- 3. Peery, D.J., and Azar, J.J., Aircraft Structures, 2nd edition, McGraw Hill, N.Y., 1999

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	7
SEE	Semester End Examination	50	50
	100		

	CO/PO Mapping													
СО/РО	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO404.1	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO404.2	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO404.3	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO404.4	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO404.5	3	3	1	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	1	-	-	-	-	-	-	-	-	-	3	-

Low-1: Medium-2: High-3

SEMESTER – IV

COURSE: AIRCRAFT CONTROL ENGINEERING

Course Code	ANE23405	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Engineering Mathematics

Course Objectives: To enable students to apply the knowledge of Control engineering and Microprocessors in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Open and Closed Loop Systems, Feedback Control systems and Mathematical
	Models.
CLO2	Transfer Functions, Block Diagrams and Signal flow graphs
CLO3	System stability and types of controllers
CLO4	Basics about linear and digital IC's
CLO5	Architecture of Microprocessor and its application

Content	No. of
	Hours/RBT
	levels
Module 1	
MATHEMATICAL MODELLING OF CONTROL SYSTEMS: Concept of system and its types, control system- Open loop and closed loop systems with examples, Concepts of feedback and basic structure of feedback control system. DC and AC motors in control systems, Transfer functions definition and its properties - Transfer function models of mechanical systems, electrical circuits -Analogous systems: Force voltage and Force current analogy, Torque voltage and Torque current.	08Hours
Module 2 BLOCK DIAGRAMS AND SIGNAL FLOW GRAPHS: Block representation of control systems and terminologies, block diagram algebra and reduction of block diagrams, Signal flow graph method, Mason's gain formula and its applications.	08 Hours
Module 3 STABILITY AND CONTROL: System stability analysis using Routh's — Hurwitz Criterion, Root locus, Time response and frequency response - Bode plot, Digital controllers and its types, application-Compensation methods — Series and feedback compensation, Lead, Lag and Lead-Lag Compensators	08 Hours

Module 4 LINEAR AND DIGITAL IC'S: Comparison Between Analog and Digital Systems - Number Representation - Binary, Octal and Hexadecimal Number Systems- Half Adder and Full Adder -Multiplexers- Demultiplexers - Decoders – Encoders.	08 Hours
Module 5 MICROPROCESSORS: Architecture of Intel 8085- Instruction Formats - Addressing Modes - Simple Assembly Language Programs - Architecture and Functioning of Intel 8086 Processor - Instruction Formats – Addressing Modes. Microprocessor Applications in aerospace	08Hours

CO405.1	Comprehend the open loop & closed loop systems and Mathematical Models.
CO405.2	Solve the complex physical systems using Block diagrams and Signal Flow Graphs
	and obtain Transfer function
CO405.3	Apply the feedback control systems for stability and Controllers
CO405.4	Summarize the basic knowledge on Linear and Digital ICs.
CO405.5	Outline the architectures of Microprocessor and its application

Textbooks:

- 1. Control Engineering- U.A. Bakshi and V.U. Bakshi, Technical Publications Autar Kaw,
- 2. Control Systems Engineering, A. NagoorKani, RBA Publications 2014 edition, 2006.

Reference books:

- 1. Modern Control Engineering, Katsuhiko Ogatta, Pearson Education 2004
- 2. Control Systems Engineering, I.J. Nagrath and M. Gopal, New Age Publishers 2017
- 3. Modern Control Systems, Richard. C. Dorf and Robert.H. Bishop Addison Wesley 1999

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		50
CIE SEE	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	Grand Total	<u> </u>	100

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO405.1	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO405.2	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO405.3	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO405.4	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO405.5	3	3	2	2	1	-	-	-	1	1	1	-	1	1
Average	3	3	2	2	1	-	-	-	1	1	1	-	1	1

Low-1: Medium-2: High-3

SEMESTER – IV ABILITY ENHANCEMENT COURSE

COURSE: AI AND ML FOR AEROSPACE APPLICATIONS

Course Code	ANE23406A	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Pre-requisite: Nil

Course objectives: This course will enable students to

CLO1	Understand the basics of Artificial Intelligence and Machine Learning
CLO2	Acquire the knowledge of the foundations of AI and AL
CLO3	Gather the information on its different algorithms and their applications in
	Aerospace Engineering

Content	No. of Hours/RBT levels
Module-1 Introduction: Data Science, AI & ML, Scientific Method, Modelling Concepts CRISP-DM methods, Programming: Commands and Syntax, Packages and Libraries, Introduction to Data Types, Data Structures in R - Vectors, Matrices, Arrays, Lists, Factors, Data Frames, Importing and Exporting Data, Control structures and Functions	08 Hours
Module-2 Descriptive Statistics Data exploration: Qualitative and Quantitative Data, Measure of Central Tendency, Measure of Positions, Measure of Dispersion Anscombe's quartet, Statistical Analysis Initial Data Analysis, Probability	
Module-3	
Data Acquisition: Data Quality and Transformation, Handling Text Data,	
Principles of Big Data, Data Visualization, Sampling and Estimation, Inferential Statistics	08 Hours
Module-4	
Linear Regression: Multiple Linear Regression, Non-Linear Regression,	
Forecasting models, Foundations for ML, Clustering, Naïve Bayes Classifier, K-Nearest Neighbors, Support Vector Machines, Support Vector Machines	08 Hours
Module-5	
Foundations for AI: Application areas, AI Basics (Divide and Conquer Greedy, Branch and Bound, Gradient Descent), NN basics	08Hours

(Perceptron and MLP, FFN, Back propagation), Convolution Neural Network	s
Recurrent Neural Networks,	
Deep Learning	
Web links and Video Lectures (e-Resources):	
https://nptel.ac.in/courses/106106198	

CO406A.1	Apply the basics of Artificial Intelligence and Machine Learning
CO406A.2	Use the knowledge of the foundations of AL and AL
CO406A.3	Implement the information on its different algorithms and their applications in
	Aerospace Engineering

Textbooks:

- 1. The Hundred-Page Machine Learning Book by Andriy Burkov
- 2. Machine Learning by Tom M Mitchell
- 3. Artificial Intelligence: A Modern Approach, 4th US ed. by Stuart Russell and Peter Norvig

Reference books:

- 1. Machine Learning and Data Mining in Aerospace Engineering by Aboul Ella Hassanien
- 2. Applications of Machine Learning by Jitendra Kumar Verma
- 3. Artificial Intelligence and Machine Learning for Business for Non-Engineers by CRC Press

Web links and Video Lectures (e-Resources):

https://nptel.ac.in/courses/106106198

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks
CIE Test-1 CIE Test-2	40	50
CIE Test-3		

	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total			100

CO/PO M	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	_	_	_	_	-	-	-	-	-	_	2	-
CO307A.2	3	2	-	_	-	-	-	-	-	-	-	_	2	-
CO307A.3	3	2	_	_	_	-	-	-	-	-	-	_	2	-
CO307A.4	3	2	_	_	-	-	-	-	-	-	-	_	2	-
CO307A.5	3	2	_	_	_	_	_	-	-	-	-	_	2	-
Average	3	2	_	_	-	-	_	-	-	-	-	_	2	-

Low-1: Medium-2: High-3

SEMESTER – IV ABILITY ENHANCEMENT COURSE

COURSE: SPREADSHEET-BASIC FOR ENGINEERS

Course Code	ANE23406B	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	To create different plots and charts
CLO2	To compute different functions, conditional functions and make regression analysis
CLO3	To carryout iterative solutions for roots, multiple roots, optimization and non-linear regression analysis
CLO4	To Understand VBA and UDF
CLO5	To understand VBA subroutines and Macros
CLO6	To carryout numerical integration and solving differential equations using different methods

Sl.NO	Experiments
1	Charting: Create an XY scatter graph, XY chart with two Y-Axes, add error bars to your plot, create a combination chart
2	Functions: Computing Sum, Average, Count, Max and Min, Computing Weighted Average, Trigonometric Functions, Exponential Functions, Using The CONVERT Function to Convert Units
3	Conditional Functions: Logical Expressions, Boolean Functions, IF Function, Creating a Quadratic Equation Solver, Table VLOOKUP Function, AND, OR and XOR functions.
4	Regression Analysis: Trendline, Slope and Intercept, Interpolation and Forecast, The LINEST Function, Multilinear Regression, Polynomial Fit Functions, Residuals Plot, Slope and Tangent, Analysis ToolPack.
5	Iterative Solutions Using Excel: Using Goal Seek in Excel, Using The Solver To Find Roots, Finding Multiple Roots, Optimization Using The Solver, Minimization Analysis, NonLinear Regression Analysis.
6	Matrix Operations Using Excel: Adding Two Matrices, Multiplying a Matrix by a Scalar, Multiplying Two Matrices, Transposing a Matrix, Inverting a Matrix and Solving System of Linear Equations.
7	VBA User-Defined Functions (UDF): The Visual Basic Editor (VBE), The IF Structure, The Select Case Structure, The For Next Structure, The Do Loop Structure, Declaring Variables and Data Types, An Array Function The Excel Object Model, For Each Next Structure.

8	VBA Subroutines or Macros: Recording a Macro, Coding a Macro Finding Roots by Bisection, Using Arrays, Adding a Control and Creating User Forms.
	Demonstration Experiments (For CIE)
9	Aerospace equations: Many of the aerospace equations, such as lift and drag coefficients, can be calculated using custom formulas in Excel
10	Wind tunnel correction functions: To correct wind tunnel data based on atmospheric conditions.("ISBLANK" and "IF" functions can be used)
11	Flight trajectory functions: To look up flight path parameters based on any given conditions.("Vlookup" and "Match" functions can be used)
12	Launch vehicle functions: To look up rocket performance parameters based on any given conditions.("INDEX" and "MATCH" functions can be used)

CO406B.1	To create different plots and charts
CO406B.2	To compute different functions, conditional functions and make regression analysi
	To carryout iterative solutions for roots, multiple roots, optimization and non-linea regression analysis $\ \square$
CO406B.4	To Understand VBA and UDF
CO406B.5	To understand VBA subroutines and Macros
	To carryout numerical integration and solving differential equations using differen methods

Suggested Learning Resources: Books

McFedries PaulMicrosoft Excel 2019 Formulas And Functions Microsoft Press, U.S, 2019 Edition

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks
CIE Test-1		

CIE	CIE Test-2	40	50	
	CIE Test-3			
	Quizzes /Assignment	10		
SEE	Semester End Examination	50	50	
Grand Total			100	

CO/PO M	appin	g												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	-	_	-	-	-	-	-	_	-	_	2	_
CO307A.2	3	2	-	_	-	-	-	-	_	_	-	_	2	-
CO307A.3	3	2	-	_	-	-	-	-	-	-	-	_	2	_
CO307A.4	3	2	-	_	-	-	-	-	-	-	-	_	2	_
CO307A.5	3	2	-	-	-	-	-	-	-	-	-	-	2	-
Average	3	2	_	-	_	-	-	-	_	-	_	-	2	-

Low-1: Medium-2: High-3

SEMESTER – IV ABILITY ENHANCEMENT COURSE

COURSE: INTRODUCTION TO PROGRAMMING WITH MATLAB AND PYTHON

Course Code	ANE23406C	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	Learn how to programme with MATLAB and Python
CLO2	Be familiar with programming environments of MATLAB and Python
CLO3	Carry out lab sessions using MATLAB and Python

Sl.NO	Experiments
1	Write a MATLAB program to obtain linear convolution of the given sequences.
2	Write a MATLAB program to perform amplitude-scaling, time-scaling and time-shifting on a given signal.
3	Write a MATLAB program to obtain Cross correlation of sequence $x(n)$ and $y(n)$ & autocorrelation of a sequence $x(n)$ of the given sequences & verify the property.
4	Write a MATLAB program to generate Fourier series of a Square Wave.
5	Write a Python Program to find the square root of a number by Newton's Method.
6	Write a python program to search an element in an array using Linear search technique & Binary search technique.
7	Write a Python program to sort the elements using selection sort & insertion sort.
8	Write a python program to check whether the given string is palindrome or not.
	Demonstration Experiments (For CIE)
9	Write a MATLAB program to Calculate and plot using MATLAB Fourier Transform and Z-Transform of a given signal.
10	Checking linearity/non-linearity of a system using SIMULINK Build a system that amplifies a sine wave by a factor of two.
11	Demonstrate a Python program to sort all the elements in proper order using the logic of Merge sort.
12	Demonstration of working with PDF and word files

CO406C.1	Program with MATLAB and Python
	Develop basic to complex code in the programming environments of MATLAB and Python
CO406C.3	Modify and Maintain codes written using MATLAB and Python

Suggested Learning Resources: Books

- 1. Allan Fowler-AR Game Development , 1st Edition, A press Publications, 2018, ISBN 978-1484236178
- 2. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016),ISBN-10: 9332578494 **Reference Books:** 3.Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN: 9781491962381
- 4.Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
CIE	CIE Test-1 CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	tal	1	100

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	_	_	_	_	-	-	_	_	-	_	2	_
CO307A.2	3	2	-	-	-	_	-	-	_	_	-	_	2	_
CO307A.3	3	2	-	_	_	_	-	-	_	-	-	_	2	_
CO307A.4	3	2	_	_	_	_	-	-	_	-	-	_	2	_
CO307A.5	3	2	_	-	_	_	-	-	_	_	-	_	2	_
Average	3	2	-	-	-	_	-	-	-	_	-	_	2	-

Low-1: Medium-2: High-3

SEMESTER – IV ABILITY ENHANCEMENT COURSE

COURSE: INTRODUCTION TO AUGMENTED REALITY

Course Code	ANE23406D	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	Describe how AR systems work and list the applications of AR.
CLO2	Understand and analyze the hardware requirement of AR.
CLO3	Use computer vision concepts for AR and describe AR techniques
CLO4	Analyze and understand the working of various state of the art AR devices Acquire knowledge of mixed reality
CLO5	Describe how AR systems work and list the applications of AR.

Content	No. of Hours/RBT levels
Module 1	08 Hours/
Introduction to Augmented Reality (A.R): Defining augmented reality,	L2
history of augmented reality, The Relationship between Augmented Reality	

and Other Technologies-Media, Technologies, Other Ideas Related to the	
Spectrum between Real and Virtual Worlds, applications of augmented reality	
Augmented Reality Concepts- Concepts Related to Augmented Reality,	
Ingredients of an Augmented Reality Experience.	
Module 2	
Augmented Reality Hardware: Displays – Audio Displays, Haptic Displays, Visual Displays, Other sensory displays, Visual Perception, Requirements and Characteristics, Spatial Display Model. Processors – Role of Processors, Processor System Architecture, Processor Specifications.	08 Hours/ L2
Tracking & Sensors - Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion.	
Module 3	
Computer Vision for Augmented Reality & A.R. Software: Computer Vision for Augmented Reality - Marker Tracking, Multiple-Camera Infrared Tracking, Natural Feature Tracking by Detection, Simultaneous Localization and Mapping, Outdoor Tracking Augmented Reality Software - Introduction, Major Software Components for Augmented Reality Systems, Software used to Create Content for the Augmented Reality Application.	08 Hours/ L2
Module 4	
AR Techniques- Marker based & Markerless tracking: Marker-based approach- Introduction to marker-based tracking, types of markers, marker camera pose and identification, visual tracking, mathematical representation o matrix multiplication Marker types- Template markers, 2D barcode markers, imperceptible markers. Marker-less approach- Localization based augmentation, real world examples Tracking methods- Visual tracking, feature based tracking, hybrid tracking, and initialization and recovery.	08 Hours/ L2
Module 5	
AR Devices & Components : AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene AR Devices – Optical See- through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, and Video see-through systems	08 Hours/ L2

CO406D.1	Describe how AR systems work and list the applications of AR.
CO406D.2	Understand and analyse the hardware requirement of AR.
CO406D.3	Use computer vision concepts for AR and describe AR techniques
CO406D.4	Analyse and understand the working of various state of the art AR devices
CO406D.5	Acquire knowledge of mixed reality

Suggested Learning Resources: Books

- 1. Allan Fowler-AR Game Development , 1st Edition, A press Publications, 2018, ISBN 978-1484236178
- 2. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016),ISBN-10: 9332578494

Reference Books:

- 3.Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN: 9781491962381
- 4.Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
CIE	CIE Test-1 CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	otal	'	100

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO307A.1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.2	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.4	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO307A.5	3	2	-	-	-	-	-	-	-	-	-	-	2	-
Average	3	2	-	-	-	-	-	-	-	-	-	-	2	-

Low-1: Medium-2: High-3

SEMESTER – IV

Course: ADVANCED CAAD LAB

Course Code	ANEL23408	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	0	Examination Hours	3

Prerequisites: Prerequisites: Computer Aided Aircraft Drawing-CATIA 3D Experience

Course Objectives: To enable students to apply the knowledge of Advanced Computer Aided Aircraft Drawing in broad domain of Aeronautical engineering by making them to learn:

CLO1	Knowledge of Surface design and wireframes
CLO2	Sheetmetal design using CATIA 3D experience
CLO3	Detailed Drafting from conversion of 3D components and its assembly
CLO4	Geometrical dimensioning and tolerances
CLO5	Rendering exploded view

Content	No. of Hours/RBT levels
PART-A	
INTRODUCTION TO SURFACE DESIGN: Introduction to Surface Design and concept of Hybrid Design. GUI of Surface Design workbench. Create Curves and Wireframes using 3D Lines, Points, Planes and Spline. Create advanced Swept Surfaces and Blend features. Create wireframe features using existing curves and surfaces. Assemble, Re-limit and connect surfaces smoothly using Split, Trim, Join and Disassemble. Convert Surface to Solid INTRODUCTION TO SHEET METAL DESIGN: Terminology and Design process for creating Sheet Metal part. GUI of Sheet Metal Design workbench. Create Sheet Metal part using Wall, User Flange, Hole and Rectangular Pattern, Wall On Edge with Bend, Corner Relief, Louver, Bead, Bridge and Flanged Cut-out, Extrusion, Cylindrical Bend and Cut-out	CO1, L2
PART B	
INTRODUCTION TO FUNCTIONAL TOLERANCE AND ANNOTATIONS: Define various GD&T options. Create Annotation Planes. Add and manage 3D. Annotations on these planes. Create 3D Views. Manage	

3D	Geometry	associated	with	3D	Annotations.	Add	Dimensions	with	
Tole	erances								

CO408.1	Use different feature-based tools to build 3D model
CO408.2	Create part and product detailed drawing
CO408.3	Create wireframes and surfaces
CO408.4	Create Sheet Metal part using the standard features
CO408.5	Annotate 3D part and create 3D views

Textbooks:

- 1. **Gopalakrishna, K. R.** (2017). Machine Drawing in First Angle of Projection. Subhas Publications.
- 2. Bhatt, N. D. (2016). Machine Drawing. Charotar Publishing, 50th Edition.

Reference Books:

- 1. Narayana, K. L., Kannaiah, P., & Reddy, K. V. (2019). Machine Drawing. New Age International Publishers, 6th Edition.
- 2. Sidheshwar. (2006). Machine Drawing. Tata McGraw-Hill Education, 33rd Reprint.
- 3. Dhawan, R. K. (2006). Machine Drawing. S Chand Publishing, Reprint Edition.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total Marks
	PART- A	20	
SEE	PART- B	30	50
SEE Total		•	50

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	MANUAL/RECORD	20	
CIE	CIE Test-1	30	50
CIE Tot	al	50	

CO/PO M	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO408.1	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO408.2	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO408.3	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO408.4	3	1	3	-	3	-	2	-	-	-	-	-	-	3
CO408.5	3	1	3	-	3	-	2	-	-	-	-	-	-	3
Average	3	1	3	ı	3	-	2	-	-	1	-	-	-	3

Low-1: Medium-2: High-3

V SEMESTER SYLLABUS

SEMESTER -V

COURSE: AVIATION MANAGEMENT

Course Code	ANE23501	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course objectives: Introduction to the Aviation Industry and Global Aviation Economics

	· ·
CLO1	Understand the history and structure of the aviation industry.
CLO2	Explore the economic significance of air transport both Globally and within India.
CLO3	Understand Airport Operations, Infrastructure Planning, and Development.
CLO4	Acquire the general aviation management practices
CLO5	Grasp the broad disciplines of management at different levels of Aviation Industry

Content	No. of Hours
Module 1	
Introduction to the Aviation Industry and Global Aviation Economics: History	08 Hours
and Evolution of the Aviation Industry, Overview of Global Aviation Economics,	L1,L2
Indian Aviation Industry Structure, Impact of Aviation on India's Economy, Aviation	
and Tourism in India, Regional Connectivity UDAN	
Module 2	
Airline Operations, Fleet Management, and Strategic Planning: Airline	
Operations, Fleet Management, Airline Network Planning, Strategic Planning in	
Airlines: Cost control strategies, Competitive positioning: Low-cost carriers (LCCs)	08Hours/
vs. full-service airlines, Impact of government policies and regulations on airline	L2,L3
strategy.	
Module 3	
Airport Management and Infrastructure Development in India: Airport	
Operations and Management, Airport Infrastructure and Development in India,	
Regulatory and Policy Framework: Role of the Airports Authority of India (AAI).	08Hours/
Foreign Direct Investment (FDI) in Indian Airports Economic Impacts of Airports: Airport revenue models: Aeronautical and non-aeronautical revenues.	L3

Module 4 Aviation Safety, Regulations, and Environmental Economics: Role of Directorate General of Civil Aviation (DGCA) in India, International aviation regulations (ICAO, IATA) and their impact on Indian aviation, Safety management systems and accident investigation, Environmental impacts: Noise pollution, air quality, carbon emissions, Sustainable aviation practices and green technologies, India's National Civil Aviation Policy (NCAP)	08Hours/ L3
Module 5 Financial Management and Marketing in Aviation: Financial Management in	08Hours/ L3
Aviation, Revenue Management and Pricing Strategies: Airline branding and customer loyalty programs. Marketing in Aviation, Economic Analysis of Aviation Marketing. Impact of government regulations and taxes on airline profitability.	

CO501.1	Analyse customer need and perceptions of design feedback systems
CO501.2	Infer the customer perception of quality
	Apply the foundational knowledge of airline and airport operation, scheduling and management
CO501.4	Implement the general aviation management practices
CO501.5	Prepare for the management at different levels of aviation industry

Textbooks:

- 1. "Managing Airports: An International Perspective" 6th Edition by Anne Graham, Publisher Taylor & Francis Ltd; 6th edition
- 2. DGCA Guidelines and Policy Documents (Available on the official DGCA website)
- 3. "Airline Operations and Management" A Management Textbook by Gerald N. Cook an Bruce G. Billig, Published by Routledge; 2nd edition
- 1. Aviation Industry: Strategic Management & Development" by P.K. Jain and R.S. Gupta (Indian perspective).

Reference books:

- 1. Aviation Economics and Policy" by D. L. LeCompte and John H. Leow.
- 2. Aviation Industry: Strategic Management & Development" by P.K. Jain and R.S. Gupta (Indian perspective).

Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=6Uk8F3 9ywY

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Tota	ıl	·	100

CO/PO	P01	P02	P03	P04	P05	P06	PO7	P08	P09	PO10	PO11	P012	PSO1	PSO2
CO501.1	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO501.2	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO501.3	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO501.4	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO501.5	3	3	2	2	1	-	-	-	1	1	1	-	1	1
Average	3	3	2	2	1	-	-	-	1	1	1	-	1	1

Low-1: Medium-2: High-3

SEMESTER V

COURSE: AIRCRAFT STRUCTURES -II

Course Code	ANE23502	CIE Marks	50
Hours/Week (L: T: P)	2:2:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Aircraft structural mechanics

Course Learning Objectives: To enable students to apply the knowledge of Aircraft Structural Analysis in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Assess the Bending stresses in thin-walled beams
CLO2	Analyze the Shear Flow in open and closed beams
CLO3	Evaluate the forces on Joints and fittings
CLO4	Apply the Structural Idealization to various structural components of an aircraft
CLO5	Analyze the stresses in wings and fuselage structures

Content	No. of
	Hours/RBT
	levels
Module 1	
BENDING OF OPEN AND CLOSED THIN-WALLED BEAMS:	
Symmetrical bending, unsymmetrical bending, direct stress distribution due to	08Hours/
bending, position of the neutral axis, load intensity, shear force, and bending	L3
moment relationships, calculation of section properties, approximation for thin-	
walled sections.	
Module 2	
SHEAR FLOW IN OPEN SECTIONS: Thin-walled beams, Concept of she	
flow, shear centre, Elastic axis. With one axis of symmetry, with wall effective	08 Hours/
and ineffective in bending, unsymmetrical beam sections.	L3
SHEAR FLOW IN CLOSED SECTIONS: Bredt – Batho formula, Single ar	
multi - cell structures, approximate methods. Shear flow in single and multi-ce	
under bending -with walls effective and ineffective.	
Module 3	
JOINTS AND FITTINGS: Bolted or riveted joints, accuracy of fitting	
analysis, eccentrically loaded connections, welded joints, and concept of	08 Hours/
effective width.	L3

Module 4	
STRUCTURAL IDEALIZATION: Structural idealization Principle,	00 Hanna /
Idealization of a panel, effect of idealization on the analysis of open and closed	08 Hours / L3
section beams. Bending of open and closed section idealized beams, shear of	L3
open section and closed section idealized beams.	
Module 5	
STRESS ANALYSIS IN WING SPARS AND BOX BEAMS: Tapered wing	08 Hours /
spar, open and closed section beams, beams having variable stringer areas,	L3
three- boom shell, tapered wings, cut-outs in wings.	LS
STRESS ANALYSIS IN FUSELAGE FRAMES: Bending, shear, torsion,	
cut-outs in fuselages, principles of stiffeners construction, fuselage frames,	
shear flow distribution.	

Sl.No	LIST OF EXPERIMENTS	RBT
		levels
1.	Deflection of a Simply Supported, Cantilever, Fixed and Continuous Beam	L3
2.	Verification of Maxwell's Reciprocal Theorem.	L3
3.	Determination of Young's Modulus and Poisson's Ratio	L3
4.	Verification of Superposition Theorem	L3
5.	Buckling load of slender Eccentric Columns and Construction of South well Plot	L3
6.	Determination of forces in the Truss structure	L3
7.	Determination of Unsymmetrical Bending stresses	L3
8.	Determination of fundamental frequency of a cantilever beam and harmonics and Frequency spectrum analysis for a cantilever beam.	L3
9.	Determination of Shear Centre for open section and Closed section	L3
10.	Composite hand layup/ Vacuum Bagging process	L3
11.	Determining the stress patterns and stress concentration using Photo elastic apparatus	L3
12.	Determining the stress, strain in Constant Strength Beam	L3

LIST OF EXPERIMENTS

- 1. Deflection of a Simply Supported, Cantilever, Fixed and Continuous Beam
- 2. Verification of Maxwell's Reciprocal Theorem.
- 3. Determination of Young's Modulus and Poisson's Ratio
- 4. Verification of Superposition Theorem
- 5. Buckling load of slender Eccentric Columns and Construction of South well Plot
- 6. Determination of forces in the Truss structure

- 7. Determination of Unsymmetrical Bending stresses
- 8. Determination of fundamental frequency of a cantilever beam and harmonics and Frequency spectrum analysis for a cantilever beam.
- 9. Determination of Shear Centre for open section and Closed section
- 10. Composite hand layup/ Vacuum Bagging process
- 11. Determining the stress patterns and stress concentration using Photo elastic apparatus
- 12. Determining the stress, strain in Constant Strength Beam

CO502.1	Evaluate the direct bending stresses exhibited in both open and closed sections, employing
	advanced analytical techniques to comprehend their structural implications.
CO502.2	Examine and assess the intricate patterns of shear flow within both open and closed section
	employing advanced analytical methodologies to grasp their structural ramifications.
CO502.3	Determine loads on riveted and welded joints for optimized structural performance.
CO502.4	Applying idealization concepts to simplify complex structural sections to understand how
	they behave, under given loading conditions.
CO502.5	Analyze the stresses in wings and fuselage structures

Textbooks:

- 1. T.M.G Megson, Aircraft Structures for Engineering Students, Edward Arnold, 44th Edition, 1995.
- 2. Peery, D.J., and Azar, J.J, Aircraft Structures, McGraw-Hill, N.Y., 2nd edition, 1993

Reference books:

- 1. Bruhn. E.H, Analysis and Design of Flight Vehicles Structures, Tristate off set company, USA, 1985.
- 2. Rivello, R.M, Theory and Analysis of Flight Structures, McGraw-Hill, 1993.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component		Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50

	CIE Test-3			
	Quiz 1/AAT	10		
SEE	Semester End Examination	50	50	
Grand '	Total		100	

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO502.1	3	3	2	-	-	-	-	-	_	-	-	1	3	_
CO502.2	3	3	2	-	-	-	-	-	_	-	-	1	3	_
CO502.3	3	3	2	-	-	_	_	_	_	-	-	1	3	_
CO502.4	3	3	2	-	-	-	-	-	_	-	-	1	3	_
CO502.5	3	3	2	-	-	-	-	-	-	-	-	1	3	-
Average	3	3	2	-	-	-	-	-	_	-	-	1	3	_

Low-1: Medium-2: High-3

SEMESTER -V

COURSE: HIGH-SPEED AERODYNAMICS

Course Code	ANE23503	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Prerequisite: Aerodynamics I

Course Learning Objectives: To enable students to apply the knowledge of Aerodynamics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To Introduce the Concepts of compressibility
CLO2	To make the student understand the theory behind the formation of Shocks and
	Expansion waves in supersonic flows.
CLO3	To know the calculations of flow properties across oblique shock wave
CLO4	To linearization of governing equations using small perturbation theory
CLO5	To understand the transonic flow over wing bodies

Content	No. of Hours/ RBT levels
Module 1 ONE DIMENSIONAL COMPRESSIBLE FLOW: Review of Thermodynamics and State Equations, Compressibility, Velocity of Sound, Adiabatic Steady-State flow Equations, Flow-through Convergent-Divergent Passage.	8 Hours/ L3
Module 2 NORMAL SHOCK WAVES: Alternative form of the One-dimensional Energy Equation, Prandtl Meyer Equation and Rankine – Hugonoit Relation, Normal Shock Equations, Velocity measurements in Subsonic and Supersonic flows, Pitot Static Tube, Rayleigh and Fanno Flow.	8 Hours/ L3
Module 3 OBLIQUE SHOCK WAVE & EXPANSION WAVES: Oblique Shocks and Corresponding Equations, Flow past wedges and concave corners, Flow past Convex corners, Strong & weak Shocks, Attached & Detached Shocks. Reflection, and Interaction of Shocks, Expansion waves.	8 Hours/ L3

Module 4	
LINEARIZED FLOW: Velocity Potential equation, Small Perturbation	
Potential Theory, Linearized Subsonic and Supersonic Pressure Co-efficient,	
Mach waves and Mach angles, Prandtl - Glauert compressibility Correction.	8 Hours/
	L3
Module 5	
TRANSONIC FLOW OVER WING: Lower and upper Critical Mach	
TRANSONIC FLOW OVER WING: Lower and upper Critical Mach numbers, Lift and Drag Divergence Mach number, Shock induced separation,	
	8 Hours/

LIST OF EXPERIMENTS

1	Calibration of Supersonic Wind Tunnel at different Mach Number.
2	Shock Wave analysis on Aero Spike Model at M=2
3	Shock Wave analysis on Aero Spike Model at M=3
4	Oblique Shock Wave analysis on a 2D Wedge.
5	Supersonic Flow analysis over a 3D Cone structure.
6	Bow Shock Wave analysis over a Hemispherical Model.
7	Expansion wave analysis over a Double wedge.
8	Shock wave analysis over a Double wedge.
9	Flow Visualization of Under Expanded Nozzle.
10	Schlieren image Visualization of Over Expanded Nozzle.
11	Stagnation Pressure Measurement for Optimized Nozzle.
12	Study of Shock Wave Boundary Layer Interaction.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO503.1	Calculate the Thermodynamic state variables in Compressible Flow.
CO503.2	Estimate the flow Properties across Normal Shock Waves.
CO503.3	Evaluate and analyze the flow Properties across Oblique Shock Waves
CO503.4	Understand the Linearization of the governing equations in compressible flow.
CO503.5	Predict the flow Properties of Transonic and Hypersonic flows.

Textbooks:

- 1. J. D. Anderson, "**Modern Compressible Flow**", 3rd Edition, McGraw Hill Education 16 August 2002.
- 2. Rathakrishnan, E., "Gas Dynamics", 6th Edition, Prentice Hall of India, 2017.

Reference books:

- 1. J. D. Anderson, "**Fundamentals of Aerodynamics**", 5th Edition, McGraw Hill Education India Private Limited, 2010.
- 2. V. Babu, "Fundamentals of Gas Dynamics", 2nd Edition, John Wiley & Sons Ltd, (2015)
- 3. Shapiro, A.H., "Dynamics and Thermodynamics of Compressible Fluid Flow", Ronald Press, 1982

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. Marks scored in each test are reduced to 30 and added to test component. CIE is executed by way of Three tests. Laboratory CIE is conducted for 20 Marks and Added to CIE component

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks			
	CIE Test-1	40				
CIE	CIE Test-2	40	30			
	CIE Test-3	40				
	LAB CIE	20	20			
SEE	Semester End Examination	50	50			
	Grand Total					

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO503.1	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO503.2	3	3	2	2	2	-	-	-	-	1	-	1	3	2
CO503.3	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO503.4	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO503.5	3	3	2	2	2	-	-	-	-	-	-	1	3	2
Average	3	3	2	2	2	-	-	-	-	ı	-	1	3	2

Low-1: Medium-2: High-3

SEMESTER-V

COURSE: MODELLING AND ANALYSIS LAB

Course Code	ANEL23504	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	1	Examination Hours	03

Course Learning Objectives: To enable students to apply the knowledge of Flight dynamics in broad domain of aeronautical engineering by making them to learn:

CLO1	Understand about the concept of mesh generation.
CLO2	Learn about how to apply boundary conditions.
CLO3	To analyze the stress of different structural components in aircraft.

LIST OF EXPERIMENTS

Content	RBT levels
Geometric Modeling and Mesh Generation of symmetric Airfoil Geometry.	L3
Geometric Modeling and Mesh Generation of unsymmetrical Airfoil Geometry	L3
3. Computations and Analysis of 2-D Incompressible and Inviscid Flow ove symmetric and unsymmetrical Airfoil.	L3

4. Geometric Modeling, Mesh Generation and flow analysis of 2-D Convergent- Divergent Nozzle.	L3
 Generation of body fitting hexagonal mesh and flow analysis of serpentin inlet duct 	L3
 Structural Modeling of Sandwich Beam of Rectangular Cross-Section and Analyses for Stresses. 	L3
7. Structural Modeling of a Three-Dimensional Wing.	L3
8. Structural Modeling and Stress Analysis of a Fuselage Bulkhead.	L3
Structural Modeling and Stress Analysis of a Simply Supported Rectangular Plate Uniformly Compressed in one Direction.	L3
10. Structural Modeling and Stress Analysis of a Simply Supported Rectangular Plate Uniformly Compressed In one Direction with a Cut- Out in Center.	L3

CO504.1	Model and analyze symmetric and unsymmetrical Aero foil Geometry.
CO504.2	Model and analyze 2D Convergent- Divergent Nozzle and 3Dserpentine inle
	duct.
CO504.3	Analyze Sandwich Beam, 3D Wing and bulkhead.
CO504.4	Perform Structural Modeling and Stress Analysis of a Simply Supported.
CO504.5	Model and analyze symmetric and unsymmetrical Aero foil Geometry.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total Marks
	PART- A	20	
SEE	PART- B	20	50
	VIVA-VOCE	10	
SEE To	otal	50	

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular courses

	Component	Marks	Total
			Marks
	MANUAL /	20	
CIE	RECORD		50
	CIE Test-1	20	
	VIVA-VOCE	10	
CIE '	Total	50	

CO/PO Ma	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO504.1	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO504.2	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO504.3	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO504.4	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO504.5	3	3	3	2	-	-	-	-	3	2	-	-	3	-
Average	3	3	3	2					3	2			3	

SEMESTER-V

COURSE: MINI-PROJECT

Course Code	ANEP23506	CIE Marks	50
Hours/Week (L: T: P)	0:0:4	SEE Marks	50
No. of Credits	2	Examination Hours	03

Mini-project work: Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students. Individual student performance is evaluated based on the following COs:

CO1	Able to make comprehensive use of the technical knowledge gained from previous courses
CO2	Able to understand technologies concerned with the project
CO3	Able to apply project management skills (scheduling work, procuring parts and documenting expenditures and working within the confines of a deadline).
CO4	Able to analyze, develop and demonstrate the proposed work
CO5	Able to communicate technical information by means of ethical writing and presentation.

CIE procedure for Mini-Project:

a. **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

b. **Interdisciplinary:** Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college. The CIE marks awarded for the MiniProject shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-Project:

- a. **Single discipline:** Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.
- b. **Interdisciplinary:** Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	Review-1		
CIE	Review-2		50
		50	
SEE	Semester End Examination	50	50
Grand Tot	100		

CO/PO	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO506.1	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO506.2	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO506.3	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO506.4	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO506.5	3	3	3	3	3	2	3	3	3	3	3	2	2	2

Low-1: Medium-2: High-3

SEMESTER-V

COURSE: RESEARCH METHODOLOGY

Course Code	RMIK23507	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: NIL

Course Learning Objectives: To enable students to apply the knowledge of Research Methodology in broad domain of aeronautical engineering by making them to learn:

CLO1	To make the student understand the foundations of Research and problem solution
CLO2	Knowledge in Research design, Qualitative and Quantitative Research
CLO3	Knowledge to formulate and derive static and dynamic aero elastic equations of
	motion.
CLO4	To understand the different types of IPR

Content	No. of
	Hours/
	RBT
	levels
Module 1	icveis
RESEARCH METHODOLOGY: Introduction, Meaning of Research, Objectives	
	8 Hours/
Research and Scientific Method, Research Process, Criteria of Good Research,	L3
Problems Encountered by Researchers in India.	L3
DEFINING THE RESEARCH PROBLEM: Research Problem, Selecting the	
Problem, Necessity of Defining the Problem, Technique Involved in Defining a	
Problem, An Illustration	
Module 2	
REVIEWING THE LITERATURE: Place of the literature review in research,	
bringing clarity and focus to research problem, improving research methodology,	
broadening knowledge base in research area, enabling contextual findings, Review	
	0.11
developing a theoretical framework, developing a conceptual framework, writing	8 Hours/
about the literature reviewed.	L3
RESEARCH DESIGN: Meaning of Research Design, Need for Research Design,	
Features of a Good Design, Important Concepts Relating to Research Design,	
Different Research Designs, Basic Principles of Experimental Designs, Important	
Experimental Designs	

Module 3 DESIGN OF SAMPLE SURVEYS: Design of Sampling: Introduction, Sample Design, Sampling and Non-Sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. MEASUREMENT AND SCALING: Qualitative and Quantitative Data, DATA COLLECTION: Introduction, Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method.	8 Hours/ L3
Module 4 TESTING OF HYPOTHESES: Hypothesis, Basic Concepts Concerning Testing of	
Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test.	8 Hours/ L3
Module 5	
INTELLECTUAL PROPERTY: Principles of IPR, Kinds of IPR, Patent- Concepts, Novelty, Utility Inventiveness/Non-obviousness, Procedure for granting and obtaining patents; Copyright- conditions for grant of copyright, Copyright in Literary, Dramatic and Musical, Works, Sound Recording, Cinematograph Films, Copyright in Computer Programme, Author Special Rights, Right of Broadcasting and performers, Trademark Law and Practices - Procedure of registration of trademark; Emerging Issues and Challenges; Few Future Aspects of Intellectual Property Rights;	8 Hours/ L3

CO507.1	Inderstand the research problem by literature review to solve problems		
CO507.2	Develop skills in qualitative and quantitative data analysis and presentation.		
CO507.3	Develop advanced critical thinking skills.		
CO507.4	Understand to write the report writing and awareness about IPR		

Textbooks:

1. Business Research Methods – Donald Cooper & Pamela Schindler, TMGH, 9th edition

2. Business Research Methods – Alan Bryman &

Emma

- Bell, Oxford University Press.
- 3. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 4. Lionel Bently., Brad Sherman-Intellectual Property Law, 3rd Edition

Reference books:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes.
- 3. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 4. Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing.

SEMESTER - V

Course: ENVIRONMENTAL STUDIES

Course Code	CIVK23508	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	3

Prerequisites:

Course Objectives: Students will be taught:

CLO1	To understand ecosystem functions and 17 SDG's for sustainable development			
CLO2	To understand advanced energy systems and natural resource management.			
CLO3	To understand global environmental issues, related policies and solutions.			
CLO4	To understand key environmental legislation related to water, air, waste and			
	environmental protection.			
CLO5	To understand e-waste management.			

Content	No. of
	Hours/
	RBT levels
Module 1 – Ecosystem and Sustainability	
Ecosystem: Structure of Ecosystem, Types: Forest, Desert, Wetlands, Riverine,	6 Hours
Oceanic ecosystems. Sustainability: 17SDG targets and possible actions. Self-	L2
Study Component (SSC): Components of the environment.	
Module 2 - Natural Resource Management	6 Hours
Natural Resources: Water resources – Availability & Quality aspects, Energy:	L2

Different types of energy, Conventional sources & non-conventional sources of Energy, Solar energy, OTEC Wind Energy, Hydrogen as an alternative energy Self-Study Component (SSC): Alternative Energy sources Disaster Management, Sustainable Mining - case studies and Carbon Trading Self-Study Component (SSC): Alternative Energy sources. Module 3 – Environmental Pollution & Waste Management Environmental Pollution: Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes; Industrial and Municipal Sludge Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Self-Study Component (SSC): Case studies of air pollution episodes. Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management Public Belf-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management Environmental Legislation: Environmental Legislation: Environmental Legislation: Self-Study Component (SSC): E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules, 2023, 2024		
Self-Study Component (SSC): Alternative Energy sources. Module 3 – Environmental Pollution & Waste Management Environmental Pollution: Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes; Industrial and Municipal Sludge Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Self-Study Component (SSC): Case studies of air pollution episodes. Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Energy, Solar energy, OTEC Wind Energy, Hydrogen as an alternative energy Self-Study Component (SSC): Alternative Energy sources Disaster Management,	
Module 3 – Environmental Pollution & Waste Management Environmental Pollution: Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes; Industrial and Municipal Sludge Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Self-Study Component (SSC): Case studies of air pollution episodes. Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
and Preventive measures, Relevant Environmental Acts, Case-studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes; Industrial and Municipal Sludge Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Self-Study Component (SSC): Case studies of air pollution episodes. Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management - 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes; Industrial and Municipal Sludge Solid Waste Management , types and sources, functional elements of SWM, Biomedical Waste Management - Sources, Characteristics Self-Study Component (SSC): Case studies of air pollution episodes. Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management - 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	and Preventive measures, Relevant Environmental Acts, Case-studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health	
Module 4 - Global Environmental Issues and Environmental Legislation Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management-2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Industrial and Municipal Sludge Solid Waste Management, types and sources, functional elements of SWM, Biomedical Waste Management - Sources,	112
Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management- 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Self-Study Component (SSC): Case studies of air pollution episodes.	
water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management - 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Module 4 - Global Environmental Issues and Environmental Legislation	
Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management-2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Global Environmental Concerns (Concept, policies and case-studies): Ground	
of people, Environmental Toxicology Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management- 2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion;	
Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management-2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Radon and Fluoride problem in drinking water; Resettlement and rehabilitation	
Environmental Legislation Environmental Legislation: Water Act 1974, Air Act 1981, Environmental Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management-2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	of people, Environmental Toxicology	6 Hours
Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management-2016 Self-Study Component (SSC): Case studies on waste management options Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		L2
Module 5 - E - Waste Management E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	Protection Act 1984, Solid Waste Management Rules-2016, E- Waste management Rule - 2022, Biomedical Waste management- 2016	
E - Waste Management Introduction of E- waste; composition and generation. Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
Global context in e- waste; E-waste pollutants, E waste hazardous properties, Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
Effects of pollutant (E- waste) on human health and surrounding environment, domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
domestic e-waste disposal, Basic principles of E waste management, Component of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		6 Цания
of E waste management. E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2022 - Salient Features and its implications. Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		
Self-Study Component (SSC): E-Waste (Management) Amendment Rules,		##

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CIVK23508.1	Analyze ecosystem dynamics to formulate strategies for addressing sustainability
CIVK25506.1	challenges and implementing the SDGs.
CIVK23508.2	Evaluate energy technologies to design effective resource management
C1 v K25500.2	strategies.
CIVK23508.3	Evaluate the impacts of pollution to develop effective waste management
C1 V IX25500.5	strategies.
CIVK23508.4	Evaluate global environmental issues to design solutions for sustainable
C1 v IX25500.4	management.
CIVK23508.5	Interpret environmental laws and regulations for sustainable management
C1 v 1X25500.5	practices.
CIVK23508.6	Understand e-waste management in a global scenario.

Suggested Learning Resources:

Textbooks

- 1. S M Prakash, "Environmental Studies" 3rd Edition, Elite Publishing House, Mangalore, 2018.
- 2. Hester R.E., and Harrison R.M, Electronic Waste Management. Science, 2009.

Reference Books:

- 1. EarchBarucha, "Environmental Studies for UG students", 2004.
- 2. Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited.
- 3. R. Rajagopalan, "Environmental Studies- From Crisis to Cure", 2nd Edition, Oxford university press, New Delhi, 2013.
- 4. Johri R., E-waste: implications, regulations, and management in India and current global best practices, TERI Press, New Delhi.
- 5. Raman Sivakumar, "Principles of Environmental Science and Engineering", 2nd edition, Cengage learning Singapur, 2005.
- 6. G. Tyler Miller Jr., "Environmental Science working with the Earth", Eleventh Edition, Thomson Brooks /Cole, 2006
- 7. Dr. Pratiba Singh, Dr.Anoop Singh and Dr. PiyushMalaviya, "Text Book of Environmental and Ecology", Acme Learning Pvt. Ltd. New Delhi.

Web Reference:

- 1. https://www.hzu.edu.in/bed/E%20V%20S.pdf
- 2. https://onlinecourses.nptel.ac.in/noc23_hs155/preview
- 3. https://onlinecourses.swayam2.ac.in/cec19_bt03/preview
- 4. https://sdgs.un.org/goals
- 5. https://kspcb.karnataka.gov.in/waste-management/biomedical-waste E Waste (Management) Rules, 2022:

6. https://kspcb.karnataka.gov.in/sites/default/files/inlinefiles/E%20Waste%20%28Management%2 9%20Rules%2C%202022.pdf

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of three test marks will be added to test component. CIE is executed by way of two quizzes/Alternate Assessment Tools(AAT's), some possible AAT's: Seminar/ assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
	CIE Test-2	40	
CIE	CIE Test-3	40	50
CIE	Average of CIE	40	30
	Quiz 1/AAT	05	
	Quiz 2/AAT	05	
SEE	Semester End Examination	100	50
	Grand Total	100	

Understand e-waste management in a global scenario.

CO/PO Mapping															
СО/РО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CIVK23508.1	2					1	1	1				2			3
CIVK23508.2	2	2	2			1	3	1				1			3
CIVK23508.3		2	2	2		1	3	1							2
CIVK23508.4		2	2	2		1	3	1				1			2
CIVK23508.5	1	2	2	2		1	2	1						1	2
CIVK23508.6	2	2	1			2	2	1				1			2
Average	1.75	2	1.8	2		1.16	2.3	1				1.25		1	2.33

SEMESTER-V

COURSE: TECHNICAL AUTHORING IN AIRCRAFT MANUALS

Course Code	ANE23510	CIE Marks	100
Hours/Week (L: T: P)	0:0:2	SEE Marks	
No. of Credits	0	Examination Hours	03

Pre requisite: Nil

COURSE LEARNING OUTCOMES

By the end of this course, students will be able to:

CLO1	Explain the importance of technical authoring in the aerospace industry and					
	differentiate between various types of aircraft manuals.					
CLO2	Identify and gather relevant technical information from multiple sources,					
	including subject matter experts, to support manual development.					
CLO3	Develop a logical and user-friendly structure for aircraft manuals, including the					
	effective use of visual aids.					
CLO4	Produce well-organized, clear, and concise technical documents that adhere to					
	industry standards and style guides.					
CLO5	Demonstrate knowledge of quality control processes for technical documentation					
	and understand the importance of user feedback in improving manual content.					

CONTENT	No. of
	Hours/RBT
	levels
Module 1	
Introduction to Technical Authoring: Overview of Technical Authoring, Type	
of Aircraft Manuals, Regulatory Standards	08 Hours/ L2
Module 2	
Research and Information Gathering: Understanding the Audience-	
Information Sources-Conducting Interviews and Workshops	
	08 Hours/ L2
Module 3	
Structuring and Organizing Content: Document Structure and Layout,	
Creating Effective Outlines, Visual Aids and Graphics	
	08 Hours/ L2

08 Hours/ L2
08 Hours/ L2

CO510.1	Describe the critical role of technical manuals in aviation safety and compliance.					
CO510.2	Execute effective research methods, including interviewing engineers an					
	collaborating with SMEs, to gather necessary information for manual creation.					
CO510.3	Design and produce a comprehensive technical manual outline, integrating relevan					
	graphics and visuals to enhance user understanding.					
CO510.4	Write and revise technical documents that meet professional standards for clarit					
	precision, and style, utilizing appropriate editing techniques.					
CO510.5	Apply quality assurance techniques to evaluate and validate technical manual					
	demonstrating an understanding of compliance requirements and feedbac					
	mechanisms for continuous improvement.					

Textbooks:

- 1. Kroes, M., & Watkins, W. (2017). Aircraft Maintenance and Repair. McGraw-Hill Education.
- 2. Wise, J. A., Hopkin, V. D., & Garland, D. J. (2009). Handbook of Aviation Human Factors. CRC Press.

Reference books:

- 1. Moir, I., & Seabridge, A. (2012). Writing Aircraft Maintenance Manuals. Wiley.
- 2. Markel, M. (2018). Technical Communication. Bedford/St. Martin's.
- 3. Microsoft Corporation. (2012). Microsoft Manual of Style for Technical Publications. Microsoft

Scheme of Examination:

Continuous Internal Evaluation (CIE):

CIE is executes by way of two quizzes/Alternate Assessment Tools (AATs) and two tests. Two Tests are to be conducted for 40 marks each. Two quizzes/Alternate Assessment Tools (AATs) will be conducted, and each quiz/AAT is evaluated doe 10 marks adding up to 20 marks for 10 marks.

Some possible AATs: Seminar/assignments/term paper/open ended experiments/mini projects/concept videos/partial reproduction of research work/oral presentation of research work/group activity/developing a generic toolbox for problem

solving/report based on participation in create —a-thon/make —a-thon/code —a-thon/ hack-a-thon conducted by reputed organizations/any other.

Table1: Distribution of weightage for CIE& SEE of Regular courses

Component	Marks	Total	
		Marks	
CIE Test-1	40		
CIE Test-2	40	100	
Quiz 1/AAT	10		
Quiz 2/AAT	10		
Semester End Examination	0	0	
Total	100		
	CIE Test-1 CIE Test-2 Quiz 1/AAT Quiz 2/AAT Semester End Examination	CIE Test-1 40 CIE Test-2 40 Quiz 1/AAT 10 Quiz 2/AAT 10 Semester End Examination 0	Marks

CO/PO I	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO510.1	2	-	-	-	-	-	3	-	-	-	_	_	_	_
CO510.2	2	-	-	-	-	-	3	-	-	-	_	_	_	_
CO510.3	2	-	2	-	-	2	3	-	-	-	_	_	_	_
CO510.4	2	2	-	-	-	2	3	_	-	-	_	_	_	_
CO510.5	2	-	-	-	-	2	3	-	-	-	_	_	_	

Low-1: Medium-2: High-3

SEMESTER -V PROFESSIONAL ELECTIVE 1

COURSE: FINITE ELEMENT METHODS

Course Code	ANE23505A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Aircraft Structures

Course Learning Objectives: To enable students to apply the knowledge of finite element methods in broad domain of aeronautical engineering by making them to learn:

CLO1	To give exposure to various methods of solution, in particular the finite element method.
CLO2	To expose the student to a wide variety of problems involving discrete and continuum elements
CLO3	To impart knowledge in the basic theory of finite element formulation
CLO4	To allow the student to learn and understanding how element characteristic matrices are generated
CLO5	To impart knowledge in assembly of finite element equations and solve for the unknowns

Content	No. of Hours/ RBT levels
Module 1	
INTRODUCTION TO FEM: Introduction to FEM, FDM and FVM, Review of	08 Hours/ L3
various approximate methods – Raleigh Ritz's, Galerkin and finite difference	
methods Governing equation and convergence criteria of finite element method.	
Module 2	
DISCRETE ELEMENTS: Bar elements, uniform sections, mechanical and	10 Hours/ L3
thermal loading, varying sections, truss analysis. Beam element with various	
loadings and boundary conditions - longitudinal and lateral vibration. Use of local and natural coordinates.	
Module 3	
CONTINUUM ELEMENTS: Plane stress, Plane strain and axisymmetric problems, constant and linear strain triangular elements, stiffness matrix, axisymmetric load vector, shape functions of Hexahedron and tetrahedron (3D Elements)	08 Hours/ L3
Module 4	
ISOPARAMETRIC ELEMENTS: Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and consistent load vector, Gaussian integration.	08 Hours/ L3

Module 5

FIELD PROBLEM: Heat transfer problems, Steady state fin problems, Derivation of element matrices for two dimensional problems, Torsion problems.

08 Hours/ L3

LIST OF EXPERIMENTS

- 1. Structural modeling and analysis of simply supported beam with central point load.
- 2. Structural modeling and analysis of cantilever beam with point loading
- 3. Structural modeling and analysis of simply supported beam with uniformly varying load.
- 4. Structural modeling and analysis of aircraft landing gear strut
- 5. Structural modeling and analysis of circular and rectangular cutout sections.
- 6. Structural modeling of sandwich beam of rectangular cross-section and analyses for stresses.
- 7. Structural modeling of a three-dimensional wing.
- 8. Structural modeling and stress analysis of a fuselage bulkhead.
- 9. Structural modeling and stress analysis of a simply supported rectangular plate uniformly compressed in one direction.
- 10. Structural modeling and stress analysis of a simply supported rectangular plate uniformly compressed in one direction with a cut- out in center.

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

	1
	Understand the approximate methods used for solving structural mechanics problems
CO505A.1	and formulation of governing equation for the finite element method
CO505A.2	Solve 1-D problems related to static analysis of structural members
CO505A.3	Formulate the elemental matrices for 2-D problems.
	Exposure to iso-parametric element formulations and importance of numerical
CO505A.4	integration.
CO505A.5	Solve Eigen value problems and scalar field problems.

Textbooks:

- 1. Dhanaraj. R and K.Prabhakaran Nair, "Finite Element Method", Oxford university press, India, 2015.
- 2. Rao. S.S., The Finite Element Methods in Engineering, Butterworth and Heinemann, 5th edition, 2010.
- 3. Reddy J.N. An Introduction to Finite Element Method McGraw Hill, 3rd edition, 2005.
- 4. Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to Finite Elements in Engineering Prentice Hall India, 3rd Edition, 2003.
- 5. Reference books:

- 1. Bathe K.J. and Wilson, E.L., Numerical Methods in Finite Elements Analysis, Prentice Hall of India, 1985.
- 2. Krishnamurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2nd edition, 2001.
- 3. Larry J Segerlind, 'Applied Finite Element Analysis', 2nd Edition, John Wiley and Sons, Inc. 1985.
- 4. Robert D Cook, David S Malkus, Michael E Plesha, 'Concepts and Applications of Finite Element Analysis', 4th edition, John Wiley and Sons, Inc., 2003.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks	
	CIE Test-1			
CIE	CIE Test-2	40	50	
	CIE Test-3			
	Laboratory	20	20	
SEE	Semester End Examination	50	50	
Grand '	Grand Total			

						CO/I	PO M	appii	ng					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO505A.1	3	3	2	2	2	-	-	-	-	-	_	1	3	-
CO505A.2		3	2	2	2	-	-	-	-	-	_	1	3	_
CO505A.3	3	3	2	2	2	_	_	-	_	_	_	1	3	_
CO505A.4	.3	3	2	2	2	-	-	-	-	-	_	1	3	_
CO505A.5		3	2	2	2	-	-	-	-	-	_	1	3	_
Average	3	3	2	2	2	-	_	-	-	-	_	1	3	-

SEMESTER -V PROFESSIONAL ELECTIVE 1

COURSE: AERO PROPULSION -II

Course Code	ANE23505B	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	3	Examination Hours	03

CLO1	The basic functions and challenges in design and development of ramjet and scramjet engines
CLO2	The classification and fundamentals of rocket propulsion and their systems
CLO3	The design and development of solid rocket propulsion and their applications
CLO4	The different types of liquid propellants, their merits and demerits. Development of hybrid rocket and their applications
CLO5	The elementary principles of electric rockets, their types, functions and future rocket engines

Course Learning Objectives: To enable students to apply the knowledge of Rocket Propulsion in broad domain of Aeronautical Engineering by making them to learn:

CONTENT	No. of Hrs /RBT Levels
MODULE 1 RAMJET AND SCRAMJET: Operating Principles of ramjet engine, ramjet components and their functions, modes of inlet operations, combustion in ramjet, design of ramjet, performance characteristics. Introduction to scramjet, need for supersonic combustion, problems associated with supersonic combustion salient features of scramjet engine and its applications, Numerical problems	08Hours /L2
MODULE 2 FUNDAMENTALS OF ROCKET PROPULSION: History of rocket engines, basic principles of rocket propulsion, types of rocket engines, applications of rocket, ideal rocket engine, thrust equation, rocket nozzle classifications, performance parameters, staging in rockets, Numerical problems	8 Hours /L3
MODULE 3 SOLID ROCKET PROPULSION: Solid propellant rocket, Selection criteria of solid propellants, burning rate of propellants, propellant grain design considerations, erosive burning, homogeneous propellants, heterogeneous propellants, igniters, types of igniters, Numerical problems	8 Hours /L3

MODULE 4 LIQUID ROCKET PROPULSION: Liquid propellant rocket, monopropellants, bipropellants, selection of liquid propellants, liquid fuels and oxidizers, types of feed systems for liquid rockets, thrust control in liquid rockets, cooling in liquid rockets, hybrid propulsion, limitations of hybrid propulsion, Numerical Problems	8 Hours /L3
MODULE 5 NON-CHEMICAL ROCKET ENGINE: Principles of electrical rocket engine, Classifications of electrical rockets, Electrothermal thrusters, Electrostatic thrusters, Electromagnetic thrusters, Nuclear rocket engines, Solar energy rockets, Numerical Problems	8 Hours /L3

	<u> </u>
	Outline the functions and challenges in design and development of ramjet and
CO505B.1	scramjet engines
CO505B.2	Develop and demonstrate a rocket propulsion and their systems
CO505B.3	Build a solid rocket and to examine their propellants and thrust performance.
	Categorize the liquid propellants based on their merits and demerits for a selected mission profile
CO505B.5	Model and exhibit an opposite electric rocket system based the mission requirements

Textbooks:

- 1. George P. Sutton and Oscar Biblarz, "Rocket propulsion elements", John Wiley & Sons Inc., Hoboken, New Jersey, 2017
- 2. D.P Mishra, "Fundamentals of Rocket Propulsion", CRC Press, Taylor & Francis Group, 2017

Reference books:

- 1. K Ramamurthi, "Rocket propulsion", Macmillan publishers india ltd, 2010.
- 2. William J. Emrich Jr., "Principles of Nuclear Rocket Propulsion", second edition, Butterworth Heinemann publications, 2023.
- 3. By Stephen D. Heister, William E. Anderson, Timothée L. Pourpoint, Joe Cassady, R. Joseph Cassady, "Rocket Propulsion", Cambridge university press, 2019

Web references/ Additional online information (related to module if any):

- 1. https://archive.nptel.ac.in/courses/101/106/101106082/
- 2. https://archive.nptel.ac.in/courses/112/106/112206073/

Practical knowledge references

- 1. https://study.com/academy/lesson/rocket-propulsion-definition-principles.html
- 2. https://spectra.mhi.com/rocket-engines-the-history-future-of-a-test-facility

3. https://www.grc.nasa.gov/www/k-12/rocket/TRCRocket/rocket principles.html

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least onefull question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
CIE	CIE Test-1 CIE Test-2	40	50
	CIE Test-3 Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total	Examination		100

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO505B.1	3	2	2	-	1	-	-	1	1	1	-	1	3	-
CO505B.2	3	2	1	-	-	1	-	1	1	1	-	1	3	-
CO505B.3	3	2	2	-	-	1	-	1	ı	1	-	1	3	-
CO505B.4	2	2	2	-	-	1	-	1	1	1	-	1	3	-
CO505B.5	2	2	2	-	-	1	-	1	1	1	-	1	3	-
Average	3	1	2	-	-	1	-	1	1	1	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER-V PROFESSIONAL ELECTIVE 1

COURSE: HELICOPTER DYNAMICS

Course Code	ANE23505C	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Basics of Aeronautical Engineering

Course Objectives:

To make the student familiarize with the principals involved in helicopters and to study the performance

and stability aspects of Helicopter under different operating conditions.

CLO1	Understand how helicopters work and their historical development
CLO2	Apply the concept of momentum theory and Blade element theory to analyse helicopter aerodynamics
CLO3	Understand the basics of blade element theory and its application in designing the blade profiles
CLO4	Evaluate the helicopters performance.
CLO5	Explore the dynamics and vibration aspects of helicopters

Content	No. of Hours/ RBT levels
Module 1 Brief overview and basics of Helicopter: Historical development of rotorcraft, comparison of helicopter with fixed wing aircraft, features, roles, parts of helicopter, propulsion & power transmission, basic controls, reaction torque, anti-torque mechanisms, Autorotation concept, different helicopter configurations. Helicopter complexities – Rotor wake, Dissymmetry of Lift in forward flight, Control mechanism, ground resonance, stability & control issues.	08 Hours / L2
Module 2 Momentum theory in hover and axial flight: Modeling rotor as an actuator disc, momentum theory, concept of induced velocity, development of simplified models for induced velocity, induced power, and figure of merit, momentum theory in vertical climb, flow states in climb, descent and vortex ring state.	08 Hours / L2
Module 3 Blade element theory in hover and vertical climb: Combined momentum and blade element theory, Ideal twist and taper distribution, rotor solidity, general equation for induced velocity, thrust & torque equations, tip losses, ground effect and autorotation in vertical descent.	08 Hours / L2
Module 4 Helicopter in forward flight & performance Analysis: Momentum theory, induced velocity & induced power variation with forward speed. Blade motion in forward flight, reverse flow region, blade element theory, expression for thrust, torque and H-force. Hover performance, Hover in ground Effect, hover out of ground effect, hover ceiling, forward flight performance and power required	08 Hours/ L2
Module 5 Rotor Dynamics & Vibration: Dissymmetry of Lift, flapping Hinge, flapping motion in hover: flapping equilibrium, coning — Causes & Effects, static & dynamic stability of flapping motion in hover. Rotor as Gyroscope — Gyroscopic Effect on Rotor response, Rotor Pitch Control: Collective & Cyclic. Rotor dynamics with Flap- Hinge Offset and Flapping Dynamics, Brief introduction to helicopter vibration.	10 Hours/ L3

CO505C.1	Explain the Parts of Helicopters and their functionality
CO505C.2	Apply the Momentum theory for Analysis of Helicopter Aerodynamics
CO505C.3	Apply the Blade Element theory for Analysis of Helicopter Aerodynamics
CO505C.4	Calculate the performance parameters in various flight Conditions
CO505C.5	Understand the complexity of rotor dynamics and helicopter vibrations

Textbooks:

- 1. Alfred Gessow & Garry C. Myers, Jr, Aerodynamics of the helicopter, 8th printing, 1895, Frederick Ungar Publishing Co. New York.
- 2. R. W. Prouty, Helicopter Aerodynamics, Sterling Book House
- 3. J.Gordon Leishman, Principles of Helicopter Aerodynamics, Second Edition, Cambridge University Press.

Reference books:

- 1. John Seddon and Simon Newmann Basic Helicopter Aerodynamics, 3rd Edition, Wiley Aerospace Series, London.
- 2. 2.A.R.S. Bramwell, George Done and Davis Balmford, Bramwell's Helicopter Dynamics, 2nd Edition, Butterworth-Heinemann (Reed Educational & Professional Publishing Ltd.), 2001. 3. 3.Helicopter Flying Handbook, 2012 by U.S. Department of Transportation, FAA

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total
			Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3	40	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO505C.1	3	2	-	-	-	-	-	-	1	1	-	1	1	1
CO505C.2	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO505C.3	3	3	1	-	-	-	-	-	1	1	-	1	1	1
CO505C.4	3	3	1	-	-	-	-	-	1	1	-	1	1	1
CO505C.5	3	3	-	-	-	-	-	-	-	-	-	1	1	1
Average	3	3	1						1	1		1	1	1

Low-1: Medium-2: High

SEMESTER -V PROFESSIONAL ELECTIVE 1

COURSE: AIRFRAME STRUCTURAL DESIGN

Course Code	ANE23505D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Aircraft Structure I and II

Course Objectives: This course will enable students to

CLO1	Understand the concepts of open and closed thin-walled beams.
CLO2	Acquire the knowledge of buckling of plates, joints and fittings.
CLO3	Comprehend the stress analysis on wings and fuselage.
CLO4	Able to understand the structural impact of rigid bodies

Content	No. of Hours/ RBT levels
Module-1 Shear and Torsion of Open and Closed Thin-Walled Beams: General stress, strain, and displacement relationship for open and single-cell closed section thin-walled beams, shear of open section beams, shear centre, shear of closed section beams. Torsion of close section beam, and displacement associated with the Bredt-Batho shear flow. Torsion of open section beam. Combined bending, shear, torsion.	08 Hours / L2
Module-2 Buckling of Plates, Joints and Fittings: Buckling of Isotropic flat plates in compression, ultimate compressive strength of Isotropic flat sheet, plastic buckling of flat sheet, columns subjected to local crippling failure, Needham & Gerard method for determining crippling stress, curved sheets in compression, elastic buckling of curved rectangular plates. Pure tension field beams, angle of diagonal tension in web. Joints and Fittings- bolted or riveted joints, accuracy of fitting analysis, eccentrically loaded connections, welded joints, and concept of effective width.	08 Hours / L2

Module-3	
Design Criteria and Structural Idealization: Design Criteria, Safety Factor,	
Design life criteria, Analysis method, Life Assessment procedures, Design	
Principle, Two bay crack criteria, Widespread Fatigue damage.	
Structural Idealization	08 Hours /
Structural idealization Principle, Idealization of a panel, effect of idealization	L2
on the analysis of open and closed section beams. Bending of open and closed	
section idealized beams, shear of open section and closed section idealized	
beams. Deflection of open and closed section idealized beams.	
Module-4	
Stress Analysis in Wing Spars and Box beams: Tapered wing spar, open and	
closed section beams, beams having variable stringer areas, three- boom shell,	
torsion and shear, tapered wings, cut-outs in wings. Stress Analysis in Fuselage	08 Hours /
Frames	L2
Bending, shear, torsion, cut-outs in fuselages, principles of stiffeners	
construction, fuselage frames, shear flow distribution.	
Module-5	
Introduction to Structural Impact: Introduction to Structural Impact, Rigid	08 Hours /
Body Impact Mechanics, Coefficient of Restitution, Oblique Impact, One	L2
Dimensional Impact Mechanics of Deformable Bodies, 1-D Wave Propagation in	
Solids Induced by Impact.	

CO505D.1	Utilize the concepts of thin-walled beams.
CO505D.2	Calculate the buckling of plates.
CO505D.3	Analysis the stress in wings and fuselage frames.
CO505D.4	Comprehend the structural impact of rigid bodies

Textbooks:

- 1. Megson, T. H. G, Aircraft Structures for Engineering Students, Edward Arnold, 1995
- 2. Peery D J & Azar J J, Aircraft Structures, McGraw Hill N.Y, 2nd edition, 1993
 - 3. W.J.Stronge, Impact Mechanics, Cambridge University Press January 2010 doi.org/10.1017/CBO9780511626432

Reference books:

- Bruhn E. F, Analysis & Design of Flight Vehicles Structures, Tri-State offset Co, USA, 1985
 - 2. Megson, T. H. G, Introduction to Aircraft Structural Analysis, Elsevier, 2nd Edition, 2014

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		Iviaiks
CIE	CIE Test-2	40	50
	CIE Test-3	40	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO505D.1	3	2	-	-	-	-	-	-	1	1	-	1	1	1
CO505D.2	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO505D.3	3	3	1	-	-	-	-	-	1	1	-	1	1	1
CO505D.4	3	3	1	-	-	-	-	-	1	1	-	1	1	1
Average	3	3	1						1	1		1	1	1

Low-1: Medium-2: High

VI SEMESTER SYLLABUS

SEMESTER-VI

COURSE: AIRCRAFT DESIGN

Course Code	ANE23601	CIE Marks	50
Hours/Week (L: T: P)	2:2:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Low speed and high-speed Aerodynamics, Aircraft Structures, Propulsion Course Learning Objectives: To enable students to apply the knowledge of Flight Vehicle Design in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Conceptual design process of an aircraft, Airfoil and wing geometry.
CLO2	Analyzing of design geometry, thrust to weight ratio and wing loading of an aircraft.
CLO3	Overview of Initial sizing and configuration layout.
CLO4	Outline of aerodynamics, propulsion w.r.t design.
CLO5	Design aspects of sub systems in flight vehicles.

Content	No. of Hours/RBT levels
Module 1 OVERVIEW OF DESIGN PROCESS: Introduction, Typical requirements for a civil transport and a military fighter aircraft, Phases of design, Aircraft conceptual design process, Take-off weight build up, Empty weight estimation, Fuel fraction estimation, Take- off weight calculation, Trade studies. Airfoil geometry, Airfoil lift and drag, Airfoil families, Airfoil design, Airfoil lift coefficient, Airfoil thickness, Camber, Stall, Reynolds number effects.	08 Hours/ L3
Module 2 GEOMETRY AND WEIGHT ESTIMATION: Wing geometry, Aspect ratio, Sweep, Taper ratio, Twist, Incidence, Dihedral, Wing vertical location of wings, Wing tips, Biplane wings, Tail geometry and arrangement. Thrust to weight definitions, Power loading, Statistical estimate of T/W. Wing Loading for Cruise, Loiter, Endurance, Instantaneous Turn rate, Sustained Turn rate, Climb, & Glide, Maximum ceiling, Selection of Thrust to Weight Ratio & Wing Loading	08 Hours/ L3
Module 3 INITIAL SIZING AND CONFIGURATION: Rubber engine sizing, Fixed engine sizing, Geometry sizing – Fuselage, Wing, Tail volume coefficient, and Control surface sizing. Conic lofting, Conic fuselage development, Conic shape parameter, Wing-tail layout & Loft. Wetted area determination. Special considerations in configuration layout: Aerodynamic, Structural, Detectability. Crew station, Passenger, and Payload arrangements.	

Module 4 AERODYNAMICS & PROPULSION: A brief overview of aerodynamic coefficients and forces, Types of propulsion systems, Jet engine thrust considerations, Thrust-drag book keeping, installed thrust methodology, Piston engine performance – propeller performance and piston-prop thrust correction, Turboprop performance.	08 Hours/ L3
Module 5 DESIGN ASPECTS OF SUBSYSTEMS: Flight Control system, Landing Gear and subsystem, Propulsion and Fuel System Integration, Air Pressurization and Air Conditioning System, Electrical & Avionic Systems, Safety constraints, Material selection criteria.	08 Hours/ L3

LABORATORY EXPERIMENTS

- 1. Aircraft Weight Estimation for Civil Transport Aircraft
- 2. Airfoil Design and Performance Analysis Using Design Software
- 3. Analysis of Wing Geometry: Aspect Ratio, Sweep, and Taper
- 4. Calculating Thrust-to-Weight Ratio and Wing Loading for Various Flight Phases
- 5. Fuselage Lofting Techniques and Wetted Area Determination
- 6. Designing Wing-Tail Layout and Sizing Control Surfaces
- 7. Thrust-Drag Analysis for Jet Engine Performance Evaluation
- 8. Evaluation of Piston-Prop and Turboprop Performance Characteristics
- 9. Landing Gear Design and Integration with Aircraft Subsystems
- 10. Simulation of Flight Control Systems and Response Analysis
- 11. Integration of Fuel System and Air Pressurization in Aircraft Design
- 12. Design and Simulation of Avionics and Electrical Systems for Aircraft

COURSE OUTCOMES: Upon completion of this course, student will be able to:

	Comprehend aircraft design fundamentals, including introduction, requirements,
CO601.1	phases conceptual design, weight calculations, trade studies, and airfoil principles.
CO601.2	Estimate the design geometry, thrust to weight ratio and wing loading of an aircraft.
CO601.3	Discuss initial sizing and configuration layout.
	Acquire a thorough understanding of aerodynamic coefficients, propulsion systems, jet
CO601.4	engine thrust, thrust-drag analysis, and piston and turboprop engine performance.
CO601.5	Discuss the design aspects of sub systems in flight vehicles.

Textbooks:

- 1. Daniel P. Raymer, "Aircraft Design A Conceptual Approach ", AIAA Education Series, IV Edition © 2006.
- 2. Thomas C Corke, "Design of Aircraft", Pearson, Edition. Inc. © 2003.

Reference books:

- 1. J Roskam, "Introduction to Aircraft Design", DAR corporation 2016.
- 2. John Fielding, "Introduction to Aircraft Design", Cambridge University Press, 2009.

3. Editor Mark Davies, "Standard Handbook for Aeronautical & Astronautical Engineers", Tata McGraw Hill 2000

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. Marks scored in each test are reduced to 30 and added to test component. CIE is executed by way of Three tests. Laboratory CIE is conducted for 20 Marks and Added to CIE component

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks		
	CIE Test-1	40			
CIE	CIE Test-2	40	30		
	CIE Test-3	40			
	LAB CIE	20	20		
SEE	Semester End Examination	50	50		
	Grand Total				

CO/PO Ma	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO601.1	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO601.2	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO601.3	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO601.4	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO601.5	3	3			_	-	_	_		-	-	-	2	_
Average	3	3			_	-	_	_	-	-	-	-	2	-

Low-1: Medium-2: High-3

SEMESTER - VI

COURSE: FLIGHT MECHANICS

Course Code	ANE23602	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Elements of Aeronautics

Course Learning Objectives: To enable students to apply the knowledge of airplane performance and stability in broad domain of aeronautical engineering by making them to learn:

periorma	ice and stability in broad domain or acronautical engineering by making them to learn.
CLO1	Understand the aircraft performance in steady unaccelerated and accelerated flight
CLO2	. Understand the airplane performance parameters and acquire the knowledge on aircraft maneuvers performance.
CLO3	Understand the basics of aircraft stability and control
CLO4	Understand the static longitudinal and static directional stability.

Content	No. of Hours/
	RBT levels
Module 1	
The Equations of Motion Steady Unaccelerated Flight: Introduction, four	
forces of flight, General equation of motion, Power available and power required	
curves. Thrust available and thrust required curves. Conditions for power	
required and thrust required minimum. Thrust available and maximum velocity,	
Power available and maximum velocity, Altitude effects on power available and	
power required; thrust available and thrust required. Steady Performance – Level	8 Hours / L4
Flight, Climb & Glide	
Performance: Equation of motion for Rate of climb- graphical and analytical	
approach -Absolute ceiling, Service ceiling, Time to climb - graphical and	
analytical approach, climb performance graph (hodograph diagram); maximum	
climb angle and rate of climb Gliding flight, Range during glide, minimum rate	
of sink and shallowest angle of glide.	
Module 2	
Fundamental Airplane Performance Parameters: The fundamental	
Parameters: Thrust – to – weight ratio, Wing loading, drag polar, and lift-to –	
drag ratio. Minimum velocity. Aerodynamic relations associated with lift-to-	
drag ratio.	8 Hours / L3
Range and Endurance:	

	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Τ.4
	Apply the basic airplane performance parameters.	L4
CO602.1	•	
CO602.2	Differentiate the aircraft performance in steady unaccelerated and	
	accelerated flight.	L3
CO602.3	Apply the basic concepts of aircraft stability and control.	L5
CO602.4	Differentiate the static longitudinal and static directional stability.	L4

Textbooks:

- 1. John D. Anderson, Jr. "Aircraft Performance and Design", McGraw-Hill International Editions, Aerospace Science/ Technology Editions, 1999.
- 2. John D. Anderson, Jr., "Introduction to flight" McGraw-Hill International Editions, Aerospace Science/ Technology Editions, 2000.
- 3. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley Son Inc, New York, 1988.
 - 4. Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2007.

Reference books:

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley Son Inc, New York, 1988.
- 2. Barnes W. McCormick, `Aerodynamics, Aeronautics, and Flight Mechanics`, John Wiley& Sons, Inc. 1995.
- 3. Bandu N. Pamadi, 'Performance, Stability, Dynamics and Control of Airplanes', AIAA 2nd Edition Series, 2004.
- 4. John D. Anderson, Jr., "Introduction to flight" McGraw-Hill, International Editions, Aerospace Science Technology Editions, 2000.

W.J. Duncan, The Principles of the Control and Stability of Aircraft, Cambridge University Press, 2016.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand 7	Fotal	100	

	CO/PO Mapping													
СО/РО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO602.1	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO602.2	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO602.3	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO602.4	3	3	2	2	-	1	1	1	-	-	-	1	3	1
Average	3	3	2	2	-	1	1	1	-	-	-	1	3	1

Low-1: Medium-2: High-3

SEMESTER VI

COURSE: MAJOR PROJECT PHASE 1

Course Code	ANEP23605	CIE Marks	100
Hours/Week (L: T: P)	0:0:4	SEE Marks	-
No. of Credits	2	Examination Hours	-

Content	No. of Hours/RBT levels
Project work phase 1:	

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary project can be assigned to an individual student or to a group having not more than 4 students. In extraordinary cases, like the funded projects requiring students from different disciplines, the project student strength can be 5 or 6.

CIE procedure for Project Work Phase - 1:

a. Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

08 Hours

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of the project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology) using Rubrics, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the Project report shall be the same for all the batchmates.

b. Interdisciplinary: Continuous Internal Evaluation shall be group wise at the

college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates as per Rubrics covering all Program Outcomes.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

	<u>. </u>
	Able to make comprehensive use of the technical knowledge gained from previous
CO605.1	courses
CO605.2	Able to understand technologies concerned with the project
	Able to apply project management skills (scheduling work, procuring parts and documenting expenditures and working within the confines of a deadline).
	Able to analyze, develop and demonstrate the proposed work
CO605.4	
	Able to communicate technical information by means of ethical writing and presentation.

Table 1: Distribution of weightage for CIE of Regular courses

Component	Marks	Total Marks
Review-1		

	Review-2	100	
CIE			100
SEE	Semester End		
	Examination		
Grand Total			100

CO/PO I	Map	ping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO605.1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO605.2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO605.3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO605.4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO605.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Low-1: Medium-2: High-3

SEMESTER VI

COURSE: FLIGHT SIMULATION LAB

Course Code	ANEL23606	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	1	Examination Hours	03

Course Learning Objectives:

CLO1	Be acquainted with basic principles of Matlab using different
CLO2	Acquire the knowledge on Sims cape
CLO3	Understand the procedures for using Simulink

LIST OF EXPERIMENTS	RBT LEVELS
1. Plot root locus with variables in transfer function through	L3
MATLAB	
2. Draw Bode plot from a transfer function in MATLAB and explain	L3
the gain and phase margins	
3. Model mass-spring damper system in MATLAB	L3
4. Model mass-spring damper in Simulink and Sims cape	L3

5. Simulate a DC motor in Simulink and Sims cape	L3
6. Simulate a DC motor with PID controller and tune the PID	L3
7. Simulate a package drop from an aircraft	L3
8. Simulate and visualize aircraft take off	L3
9. Model an UAV package delivery	L3
10. Estimate G forces for flight data	L3
11. Simulate aircraft longitudinal motion and demonstrate the effect of static margin variation for a doublet input in pitch	L3
12. Simulate a rotor-flying manipulator	L3
13. Model Maneuver stabilization for a mini drone	L3

CO606.1	CO1	Plot the root locus and bode plot
CO606.2	CO2	Calculate the dynamic response of aircraft and uav
CO606.3		Build physical component models based on physical connections that directly integrate with block diagrams and other modeling paradigms.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total
			Marks
	PART- A	20	
SEE	PART- B	20	50
	VIVA-VOCE	10	
	SEE Tota	50	

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular courses

	Component	Marks	Total
			Marks
	MANUAL /	20	
CIE	RECORD		50
	CIE Test-1	20	
	VIVA-VOCE	10	
	CIE Tot	50	

						CO	/PO N	Aappi	ng					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO606.1	3	2	2	1	3	-	-	1	-	-	-	-	-	2
CO606.2	3	2	2	1	3	-	-	-	-	1	-	-	-	2
CO606.3	3	2	2	-	3	-	-	-	-	-	-	-	-	2
Average	3	2	2	ı	3	-	-	-	-	-	-	-	-	2

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE II

COURSE: COMPOSITE MATERIALS AND STRUCTURES

Course Code	ANE23603A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Materials and Manufacturing Process

Course Objectives: To enable students to apply the knowledge of Composite Materials and Structures in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Understand the behavior of constituents in the composite materials and it					
	applications					
CLO2	Understand the various manufacturing processes of Composite materials					
CLO3	Apply constitutive equations of composite materials and understand mechanical behavior at micro level.					
CLO4	Evaluate the elastic stresses and strains in composites considering different laminate configurations					
CLO5	Inspection & Quality Control, Applications of composites in different fields of engineering.					

Content	No. of
	Hours/RBT
	levels

Module 1 Introduction to Composite Materials: Definition, classification of composite materials, classification of reinforcement - particulate, short fiber, whiskers, long fibers composites. matrix materials — metals, ceramics, polymers (including thermoplastics and thermosets), Carbon-Carbon Composites Metal. Matrix Composites: MMC with particulate and short fiber reinforcement, liquid and solid-state processing of MMC — stir casting, squeeze casting. Properties of MMCs, Applications of Al, Mg, Ti based MMC.	08 Hours / L2
Module 2	
Processing of Polymer Matrix Composites: Thermoset Polymers, Hand layup Process, Vacuum Bagging Process, Post Curing Process, Filament winding, Pultrusion, Autoclave Process, VARTM, resin film infusion. Processing of Polymer Matrix Composites: Thermoplastic Polymers, Extrusion process, Injection Moulding Process, Thermo-forming process. Post Processing of Composites – Adhesive bonding, drilling, cutting processes	08 Hours / L2
Module 3	
Micromechanics: Introduction – advantages and application of composite materials – types of reinforcements and matrices – micro mechanics – mechanics of materials approach, elasticity approach- bounding techniques – fiber volume ratio – mass fraction – density of composites. Effect of voids in composites.	08 Hours / L3
Module 4	
Macro mechanics: Generalized Hooke's Law – elastic constants for anisotropic, orthotropic and isotropic materials – macro mechanics – stress-strain relations with respect to natural axis, arbitrary axis – determination of in plane strengths of a lamina – experimental characterization of lamina.	10 Hours / L3
Failure Theory: Tsai-Hill, Tsai-Wu, Max Stress and Max Strain	
Module 5	
Inspection & Quality Control: Destructive & Non-Destructive Testing, Tensile, Compression, Flexural, Shear, Hardness; ultrasonic testing – A-B-C scan	08 Hours / L3
Repairs of Composite Materials and Applications: Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites.	

CO603A.1	Understanding the mechanics of composite materials.
CO603A.2	Understand the processing methods in composite materials.
CO603A.3	Apply the characterization methods for various engineering materials.
CO603A.4	Comprehend and apply theories of structures for engineering problems.

CO603A.5 Understand the inspection techniques used for composite and various application of composite in different fields of engineering.

Textbooks:

- 1. K.K Chawla, Composite Materials- Science and Engineering, Springer Verlag, II edition, 1998.
- 2. Autar Kaw, Mechanics of Composites, CRC Press, II edition, 2006.

Reference books:

- 1. Mein Schwartz, Composite Materials Handbook, Department of Defense, USA, 2002
- 2. Ajay Kapadia, Non-Destructive Testing of Composite Materials, TWI Publications, 2006.
- 3. R M Jones, Mechanics of Composite Materials, Taylor & Francis, 2nd Edn,2015

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand 7	<u> Fotal</u>	100	

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														

CO603A.1	3	3	-	-	-	-	-	-	-	-	-	3	-
CO603A.2	3	3	1	1	1	-	-	-	-	-	-	3	-
CO603A.3	3	3	-	1	-	-	-	-	-	-	-	3	-
CO603A.4	3	3	-	1	-	-	-	-	-	-	-	3	-
CO603A.5	3	3	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	1	1					-			3	

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE II

COURSE: ROCKET AND MISSILES

Course Code	ANE23603B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: low speed and high-speed Aerodynamics and Propulsion Objectives:

To give revelation on basic concepts of rocket motion, rocket aerodynamics, staging & control of rockets, materials and propulsion systems of rockets and missiles to students to augment their knowledge in the region of rockets and missile flight.

CLO1	Understand the historical development of rockets and missiles and their significance in aerospace technology.
CLO2	Analyze the Aerodynamic Characteristics of Rockets and Missiles.
CLO3	Gaining knowledge about the Trajectory Motion of Rockets and Missiles.
CLO4	Gain the knowledge on the separation of stages of rocket and its control
CLO5	Understand the Materials used in Rockets and Missiles

	No. of Hours/ RBT levels
Module 1	
CLASSIFICATION OF ROCKETS AND MISSILES: History of rockets and	08 Hours/ L2
missiles, Various methods of classification of missiles and rockets - Basic	
aerodynamic characteristics of surface to surface, surface to air, air to surface	
and air to air missiles - Examples of various Indian space launch vehicles and	
missiles—Current status of Indian rocket and missile program.	

Module 2	08 Hours/ L3
AERODYNAMICS OF ROCKETS AND MISSILES Forces Acting on a	00 Hours/ L3
Missile While Passing Through atmosphere, methods of Describing	
Aerodynamic Forces and Moments – Lateral Aerodynamic Moment – Lateral	
Damping Moment and Longitudinal Moment of a Rocket – lift and Drag Forces.	
Module 3	
ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD:	08 Hours/ L3
One Dimensional and Two-Dimensional Rocket Motions in Free Space and	
Homogeneous Gravitational Fields – description of Vertical, Inclined and	
Gravity Turn Trajectories – Determination of range and Altitude.	
Module 5	
MATERIALS FOR ROCKETS AND MISSILES: Criteria for selection of	
materials for rockets and missiles, requirements for choice of materials for	08 Hours/L2
propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures,	
requirements of materials at extremely high temperatures, requirements of	
materials for thermal protection and for pressure vessels.	

CO603B.1	Classify rockets and missiles based on various methods and explain the basic aerodynamic characteristics of different types.
	Analyze the Motion of Rocket and Missiles in free space and gravitational field
CO603B.3	Analyze the Aerodynamic Forces and Moments of Rockets and Missiles.
	Describe the Stage separation of Multi staging rocket and various aerodynamic & jet control methods
CO603B.5	Assess and choose appropriate Materials for Rockets and Missiles.

Textbooks:

- 1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W., Freeman & Co. Ltd. London, 1982.
- 2. Sutton, G.P., et al., "**Rocket Propulsion Elements**", 8th edition John Wiley & Sons Inc., New York.

Reference books:

- 1. Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, New Delhi 1998.
- 2. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw-Hill Book Co. Inc., 1982

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full

questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

 $Three \, Tests \, are \, to \, be \, conducted \, for \, 40 \, marks \, each. \, CIE \, is executed by way \, of quizzes/Alternate \, Assessment \, Tools \, (AATs) \, for \, 10 \, marks.$

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		30
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	Grand Total	•	100

CO/PO	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO641.1	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO641.2	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO641.3	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO641.4	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO641.5	3	3	-	-	-	-	-	-	-	-	-	-	2	-
Average	3	3	-	-	-	-	-	-	-	-	-	-	2	-

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE II

COURSE: GUIDANCE AND CONTROL

Course Code	ANE23603C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Control engineering

Course Learning Objectives: To enable students to apply the knowledge of guidance & control in broad domain of Aeronautical Engineering by making them to learn:

	1000 to main of 11010 movieur Engineering of maining them to 10011				
CLO1	Comprehend the basic concepts of navigation, guidance and control.				
CLO2	Acquire the knowledge of radar systems and other guidance systems				
CLO3	Understand the missile guidance and				
CLO4	summarize missile control system.				
CLO5	Describe the flight control and fire control of the system				

Content	No. of
	Hours/RBT
	levels
Module 1	8 Hours/ L3
Introduction to Guidance and Controls: Concepts of navigation, guidance, and	
control. Introduction to basic principles. Air data information.	
Principle of working of radar. MTI and Pulse Doppler radar. Moving target	
detector. Limitation of MTI performance. MTI from a moving platform (AMTI)	
Module 2	08 Hours/ L3
Tracking with Radar and Guidance Systems: Mono pulse tracking. Conical scan and sequential lobbing. Automatic tracking with surveillance radar (ADT). Gyros and stabilized platforms. Inertial guidance and Laser based guidance.	
Components of Inertial Navigation System. Imaging Infrared guidance. Satellite	
navigation. GPS	
Module 3	08 Hours/ L3
Transfer Functions and Missile Control System: Input-output Transfer function. Basic altitude reference. Concepts of Open loop and Close Loop. Guided missile concept. Roll stabilization. Control of aerodynamic missiles. Missile parameters for dynamic analysis. Missile autopilot schematics. Acceleration command and root locus	
Module 4	08 Hours/ L3
Missile Guidance: Proportional navigation guidance; command guidance.	
Comparison of guidance system performance. Bank to turn missile guidance	
Module 5	08 Hours/ L3
Integrated Flight/Fire Control System: Director fire control system. Tracking	
control laws. Longitudinal flight control system. Lateral flight control system.	

Rate of change of Euler angle, Auto Pilot.	

CO603C.1	Comprehend the basic concepts of navigation, guidance and control.
CO603C.2	Acquire the knowledge of radar systems and other guidance systems
CO603C.3	Understand the missile guidance and
CO603C.4	summarize missile control system.
CO603C.5	Describe the flight control and fire control of the system

Textbooks:

- 1. Fundamentals of Aerospace Navigation and Guidance P.T. Kabamba and A.R. Girard Cambridge Aerospace Series 2014
- 2. Automatic control of Aircraft & Missiles, John H Blakelock Wile –Inter Science Publication 2nd edition.

Reference books:

- 1. Navigation, R.B. Underdown& Tony Palmer Black Well Publishing 2001
- 2. Introduction to Radar Systems Merrilh I. Skolnik Tata Mc Graw Hill 3 rd edition,2001
- 3. Missile Guidance and Control Systems George M. Siouris Springer 2004 Editor Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each moduleContinuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE& SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
Grand	Total	•	100

CO/PO Map	CO/PO Mapping													
СО/РО	PO1	PO2	PO3	PO4	SOA	P06	PO7	804	60d	PO10	PO11	PO12	PSO1	PSO2
CO603C.1	3	3	_	-	-	-	-	-	2	-	-	2	2	1
CO603C.2	3	3	-	-	-	-	-	-	2	-	-	2	2	1
CO603C.3	3	3	-	-	-	-	-	-	2	-	-	2	2	1
CO603C.4	3	3	-	-	-	-	-	-	2	-	-	2	2	1
CO603C.5	3	3	-	-	-	-	-	-	2	-	-	2	2	1
Average	3	3	-	-	-	-	-	-	2	-	-	2	2	1

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE II

COURSE: FLIGHT TESTING

Course Code	ANE23603D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Aircraft Performance, Aircraft Stability and control

Course Learning Objectives: To enable students to apply the knowledge of Flight Testing in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Scope of flight testing, its types and reducing uncertainty.
CLO2	Purpose, scope and working of various instruments employed for flight-testing.
CLO3	Performance of flight at different operating conditions.
CLO4	Stability and control aspects at various flight condition.
CLO5	Various regulations and recovery techniques.

Content	No. of Hours/RBT levels
Module 1 INTRODUCTION TO FLIGHT TESTING: Purpose and scope of flight-testing, basic definition, types of flight tests, sequence of flight testing, planning the test program, governing regulations. Aircraft weight and center of gravity, flight testing tolerances. Method of reducing data uncertainty in flight test data -sources and magnitudes of error, avoiding and minimizing errors.	08 Hours/ L6
Module 2	08 Hours/ L5
Module 3 PERFORMANCE FLIGHT TESTING - RANGE, ENDURANCE AND CLIMB: Airspeed –in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Range and endurance estimation of propeller and jet aircraft. Climb performance methods. Turning performance limitations. Drag estimation. Take-off and landing - methods, procedures and data reduction.	08 Hours/ L5
Module 4 STABILITY AND CONTROL: Flight test Methods: Static longitudinal stability; Dynamic longitudinal stability. Lateral and directional static stability: Lateral and directional dynamic stability, Data reduction. Maneuvering stability methods, Regulations and data reduction.	08 Hours/ L4
Module 5 FLYING QUALITIES: MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test procedures. Hazardous flight testing: Stall and spin-regulations, test and recovery techniques. Test techniques for flutter, vibration and buffeting.	08 Hours/ L6

CO603D.1	Develop a flight test program by integrating the purpose, scope, and regulations governing flight testing along with managing aircraft weight	1.6
	and center of gravity considerations.	L6
CO603D.2	Appraise the scope and working of various instruments employed for flight	
	testing by minimizing errors.	L5
CO603D.3	Evaluate the performance of flight at different operating conditions.	L5

CO603D.	Infer the longitudinal, lateral and directional stability and control aspects at various flight conditions.	L4
CO603D.	Conclude various regulations and recovery techniques of flying and handling qualities.	L6

Textbooks:

1. Ralph D Kimberlin, "Flight Testing of Fixed Wing Aircraft", AIAA educational Series, 2003.

Reference books:

1. AGARD," Flight Test Manual ", Vol. I to IV.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table1: Distribution of weightage for CIE& SEE of Regular courses

	Component	Marks	Total Marks
CIE	CIE Test-1 CIE Test-2 CIE Test-3 Quiz 1/AAT	40	50
SEE	Semester End Examination	50	50
Grand	Total	100	

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO603D.1	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO603D.2	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO603D.3	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO603D.4	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO603D.5	3	3	2	2	-	1	1	1	2	2	1	1	2	1
Average	3	3	2	2	-	1	1	1	2	2	1	1	2	1

Low-1: Medium-2: High-3

SEMESTER VI OPEN ELECTIVE -I

COURSE: INTRODUCTION TO AERONAUTICS

Course Code	ANE23604A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to Aerospace Engineering in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To provide with a historical perspective on aviation and space technology, including the pioneers of aeronautical engineering
	To introduce fundamental principles of aerodynamics, and the forces acting on an aircraft.
CLO3	To explore the properties of materials used in flight vehicles, emphasizing the importance and introducing composite materials
CLO4	To introduce various aircraft power plants, and provide an overview of propulsion principles
CLO5	To familiarize with flight instruments and navigation instruments, and gyroscopic instruments, explaining their principles of operation

	No. of Hours/ RBT levels
Module 1	
HISTORY OF AVIATION AND SPACE TECHNOLOGY:	08 Hours/ L3
First Aeronautical Engineers, Atmosphere and its properties - The	
International Standard Atmosphere, the Physical Properties of Air,	
classification of aircrafts- lighter than aircraft, heavier than aircraft, basic	
components of an aircraft, roles of aircrafts development in military aviation	
Module 2	
BASIC AERODYNAMICS: Bernoulli's Principle, Airfoils,	08 Hours/ L3
nomenclature, wing planform, angle of attack, forces over wing section-lift,	
drag, Thrust, weight and moments, measurement of airspeed, aircraft	
motions, control surfaces and high lift devices.	
Module 3	
AIRCRAFT STRUCTURES AND MATERIALS: Properties of flight	08 Hours / L3
vehicle Materials; importance of strength to weight ratio, classification and	
characteristics of composite materials.	

Module 4 AIRCRAFT PROPULSION: Aircraft power plants, classification based on power plant engine and principle of operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets, use of propellers, Introduction to types of rockets, missiles.	10 Hours / L3
Module 5 AIRCRAFT INSTRUMENTS: Flight instruments and navigation instruments – accelerometers, air speed indicators – Mach meters – altimeters – gyroscopic instruments. Principles and operation.	08 Hours/ L3

CO604A.1	Have a foundational knowledge of the history of aviation, an understanding of the atmosphere's properties, and the ability to classify different types of aircraft
	Capable of applying Bernoulli's Principle to understand lift and drag, describe airfoil nomenclature, and analyze forces
CO604A.3	Assess the properties of materials used in aviation, recognize the significance
	Categorizing and describing different types of aircraft engines, explaining their operational principles
CO604A.5	Have a comprehensive understanding of various flight and navigation instruments, including their principles of operation

Textbooks:

- 1. A.C. Kermode, "Flight without formulae", Pearson Education India, 1989. ISBN: 9788131713891.
- 2. John D. Anderson, "Introduction to Flight", McGraw-Hil Education, 2011. ISBN 9780071086059.

Reference books:

- 1. Nelson R.C., "Flight stability and automatic control", McGraw-Hill International Editions, 1998. ISBN 9780071158381.
- 2. Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 2011. ISBN 978111965006.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	Grand Total		100

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO604A.1	3	2	-	-	-	-	-	-	-	-	-	1	1	-
CO604A.2	3	2	-	-	-	-	-	-	-	-	-	1	2	=
CO604A.3	3	2	-	-	-	-	-	-	-	-	-	1	2	=
CO604A.4	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO604A.5	3	2										1	2	

Low-1: Medium-2: High-3

SEMESTER VI OPEN ELECTIVE -I

COURSE: THE HISTORY OF AVIATION

Course Code	ANE23604B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of history of aviation Engineering in broad domain of Aeronautical Engineering by making them to learn:

Explore the historical origins of human flight, from early dreamers to early inventors and pioneers
 Examine the Wright brothers' journey to achieve powered, controlled flight and understand the principles they applied
 Investigate the rapid advancements in aviation during the early 20th century, including the impact of World War I

CLO4	Analyze the role of aviation during World War II, including developments in military
	aircraft and the Cold War-era arms race
CLO5	Explore the jet age, supersonic flight, and contemporary advancements in aviation
	technology and sustainability

Content	No. of Hours/ RBT levels
Module 1	
EARLY PIONEERS OF FLIGHT: The pre-history of aviation and early	
dreams of flight. The contributions of inventors and pioneers like Leonardo da	08 Hours/ L3
Vinci, the Montgolfier brothers, and Sir George Cayley. The development of	oo nours, no
balloons and gliders in the 18th and 19th centuries	
Module 2	
THE WRIGHT BROTHERS AND THE BIRTH OF POWERED	
FLIGHT: The Wright brothers' background and their journey to Kitty Hawk.	08 Hours/ L3
The principles of controlled powered flight. The significance of the Wright	oo nours, Es
brothers' first powered, controlled, sustained flight in 1903.	
Module 3	
THE GOLDEN AGE OF AVIATION: The rapid advancements in aviation	
technology during the early 20th century. The impact of World War I on	08 Hours / L3
aviation development. The era of aviation pioneers like Charles Lindbergh and	oo Hours / LS
Amelia Earhart.	
The growth of commercial aviation and the birth of major airlines.	
Module 4	
AVIATION DURING WORLD WAR II AND THE COLD WAR: The role	08 Hours / L3
of aviation during World War II, including the development of fighter planes	
and bombers. The Cold War-era arms race and the development of military	
aircraft. The space race and the early days of human spaceflight.	
Module 5	
MODERN AVIATION AND FUTURE TRENDS: The jet age and the	
introduction of commercial jetliners. The development of supersonic and	08 Hours/ L3
hypersonic aircraft. The impact of technology on aviation, including	vo Hours/ L3
automation, navigation systems, and air traffic control.Environmental	
challenges and the future of sustainable aviation.	

CO604B.1	Gain an understanding of the contributions of historical figures and the evolution of ideas leading to the development of aviation
CO604B.2	Appreciate the significance of the Wright brothers' historic flight and their
	pioneering contributions to aviation
CO604B.3	Recognize the achievements of aviation pioneers like Charles Lindbergh and the
	growth of commercial aviation

Understand the critical role of aviation in global conflicts and the transition into the Cold War era.
Gain insights into modern aviation technology, environmental challenges, and emerging trends shaping the future of flight

Textbooks:

- 1. James Tobin's "To Conquer the Air: The Wright Brothers and the Great Race for Flight", Free Press, 2003
- 2. Garvey, William and David Fisher, The Age of Flight A History of America's Pioneering Airline, Pace Communications, Inc., 2002
- 3. Tom Lewis, Empire of the Air: The Men Who Made Radio, 2021 by Three Hills

Reference books:

- 1. Jay Spenser. The Airplane: How Ideas Gave Us Wings, Harper Collins, 2009
- 2. Steven Gaines, The Sky's the Limit: Passion and Property in Manhattan, Non-fiction, 2005

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks			
	CIE Test-1					
CIE	CIE Test-2	40	50			
	CIE Test-3	7				
	Quizzes /Assignment	10				
SEE	Semester End Examination	50	50			
	Grand Total					

CO/PO Mapping												
PO1 PO2	PO3	PO4	PO5	90d	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2

CO/PO														
CO604B.1	2	2	-	-	-	-	-	-	_	-	-	-	1	-
CO604B.2	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO604B.3	2	2	-	-	-	-	-	1	-	-	-	-	2	-
CO604B.4	2	2	-	-	-	-	-	1	-	-	-	-	2	-
CO604B.5														
Average	2	2											2	

Low-1: Medium-2: High-3

SEMESTER- VI OPEN ELECTIVE 1

COURSE: AIRPORT PLANNING & MANAGEMENT

Course Code	ANE23604C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Airport Planning and Management by making them to learn typical operations of airport operations, economic, political and social role of airports and its management.

CLO1	To gain knowledge of the typical operations of airports from a management perspective
CLO2	To provide insights of economic, political and social role of airports
CLO3	Acquire the knowledge of airport operations
CLO4	Acquire the knowledge airport financial management
CLO5	Provide insights into the operational delay and capacity management

Content	No. of Hours/ RBT levels
Module 1 AIRPORTS AND AIRPORT SYSTEMS: Introduction: Airport management on an international level; The national plan of integrated airport systems; The nation's airport system plan; The rules that govern airport management; Organizations that influence airport regulatory policies; A historical and legislative perspective: Introduction the formative period of aviation and airports, Airport growth: World War-II and the postwar period airport modernization: The early jet age.	08 Hours/ L4
Module 2 COMPONENTS OF THE AIRPORT: The components of an airport, the airfield. Navigational aids (NAVAIDS) located on airfields; Air traffic control and surveillance facilities located on the airfield; Weather reporting facilities located on airfields; Security infrastructure on airfields; Airspace and air traffic control: Brief history of air traffic control; The basics of air traffic control; Current and future enhancements to air traffic control; Airport terminals and ground access: The historical development of airport terminals; Components of the airport terminal; Airport ground access Module 3 AIRPORT OPERATIONS AND FINANCIAL MANAGEMENT: Airport operations management: Introduction, pavement management, aircraft rescue and firefighting (ARFF); Snow and ice control, safety inspection programs. Bird and wildlife hazard management; Airport security: Security at commercial service airports, security at general aviation airports; the future of airport security	08 Hours/ L5 08 Hours/ L3
Module 4 AIRPORT FINANCIAL MANAGEMENT: Airport financial accounting, revenue strategies at commercial airports, pricing of airport facilities and services, variation in the sources of operating revenues, rise in airport financial burdens, airport funding, grant programs, airport financing, private investment sale of the airport.	10 Hours/L3
Module 5 AIRPORT CAPACITY AND DELAY: Defining capacity, factors affecting capacity and delay, estimating capacity, analytical estimates of delay: The queuing diagram; The future of airport management: Introduction, restructuring of commercial air carriers, new large aircraft and small aircraft transportation systems. restructuring of commercial air carriers, new large aircraft and small aircraft transportation systems.	08 Hours/ L5

	Analyse the historical, legislative, and regulatory frameworks of airport		l
CO604C.1	management on both national and international levels	L4	l
			ı

CO604C.2 Appraise the key components of airport infrastructure, including airfield	
navigational aids, air traffic control, weather reporting facilities, and	
security measures etc	L5
CO604C.3 Apply the airport operations effectively, including pavement	
management, aircraft rescue and firefighting, snow and ice control, safety	
inspections, and wildlife hazard management, for ensuring compliance	
with security protocols in airports	L3
CO604C.4 Apply financial management principles to airport operations, including financial accounting, revenue generation strategies, pricing of facilities and services, and understanding various funding and investment	
mechanisms to ensure sustainable airport financial health.	L3
CO604C.5 Estimate airport capacity and delays using analytical methods, factors	
influencing capacity and delay, including the impact of new aircraft	
technologies and the restructuring of commercial air carriers.	L5

Textbooks:

1.Alexander T Wells, Ed. D Seth Young ''Airport planning and Management' McGraw-Hill Education 6th Edition, 2011.

Reference books:

1. Norman J. Ashford, H. P. Martin Stanton, Clifton A. Moore, Pierre Coutu "Airport Operations", McGraw Hill 3rd Edition, 2013.

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand	Total		100

CO/PO Map	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO604C.1	3	3	1	1	-	1	1	1	-	_	-	1	1	1
CO604C.2	3	3	1	1	-	1	1	1	_	_	-	1	1	1
CO604C.3	3	3	1	1	-	1	1	1	-	_	-	1	1	1
CO604C.4	3	3	1	1	-	1	1	1	-	_	-	1	1	1
CO604C.5	3	3	1	1	-	1	1	1	-	_	-	1	1	1
Average	3	3	1	1	_	1	1	1	_	_	_	1	1	1

Low-1: Medium-2: High-3

SEMESTER- VI OPEN ELECTIVE 1

COURSE: INTRODUCTION TO FLIGHT SIMULATOR

Course Code	ANE23604D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives:

CLO1	Understand the basic principle of working of flight components
CLO2	Remember the names of components and their functions
CLO3	Think to simulate a flight

Content	No. of Hours/ RBT levels
Module 1 Historical Perspectives, The case for simulation, Engineering Flight Simulation, The changing role of simulation,	08 Hours/ L4
Module 2 The organization of flight simulator, Equation of Motion, Aerodynamic model, Engine Model, Engine model, data acquisition model, Gear Model, weather model, Visual System, Sound System, Motion System, Controls, Instrument Display, Navigation Systems, Maintenance	08 Hours/ L5
Module 3 Principles of Flight Modeling, Newtonian Mechanics, Differential Equations, Numerical Integration, Real-time computing, Flight Data	08 Hours/ L3
Module 4 The atmosphere, forces, moments, Axes System, Quaternions, Equations of Motions, propulsion-Piston Engine, Jet Engine, the landing gear	10 Hours/L3
Module 5 Simulation of flight control systems, the Laplace transform, PID control systems, Trimming, Aircraft Displays, Attitude Indicator, Altimeter, Airspeed Indicator, compass card, Automatic Direction Finding (ADF), VHF omnidirectional Range(VOR), Distance Measuring Equipment(DME),Instrument Landing Systems(ILS), GPS, Inertial Navigation System	08 Hours/ L5

CO604D.1	Apply the basic principle of working of flight components	L4
CO604D.2	Practise the names of components and their functions 3. Simulate a flight	L5

Textbooks

- 1. Principles of Flight Simulation by David Allerton, Wiley Publisher
- 2. Flight Dynamics, Simulation, and Control by Ranjan Vepa, CRC press

Reference Books

1. Flight Simulation by JM Rolfe and K J Staples, Cambridge University Press In-flight Simulation-theory and Application by Edwin A. Kidd, Gifford Bull, Robert P. Harper

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand 7	Total	100	

CO/PO Mapping														
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO604D.1	3	3	1	1	-	1	1	1	_	-	-	1	1	1
CO604D.2	3	3	1	1	-	1	1	1	-	-	-	1	1	1
Average	3	3	1	1	-	1	1	1	-	-	-	1	1	1

Low-1: Medium-2: High-3

SEMESTER – VI ABILITY ENHANCEMENT COURSE

COURSE: SYSTEMS ENGINEERING FOR AERONAUTICAL ENGINEERS

Course Code	ANE23607A	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Understand the Life Cycle of Systems.
CO2	Explain the role of Stake holders and their needs in organizational systems.
CO3	Develop and Document the knowledge base for effective systems engineering processes.
CO4	Apply available tools, methods and technologies to support complex high technology systems.
CO5	Create the frameworks for quality processes to ensure high reliability of systems.

	No. of Hours/ RBT levels
Module 1	
System Engineering and the World of Systems: What is System Engineering?	
Origins of System Engineering, Examples of Systems Requiring Systems	
Engineering, System Engineering viewpoint, Systems Engineering as a	
Profession, The power of Systems Engineering, problems. Structure of	08 Hours/ L2
Complex Systems: System building blocks and interfaces, Hierarchy of	
Complex systems, System building blocks, The system environment, Interfaces	
and Interactions.	
The System Development Process: Systems Engineering through the system Life	
Cycle, Evolutionary Characteristics of the development process, the system engineering	
method, Testing throughout system development, problems. Introduction to V Model,	
Model Based Systems Engineering.	
Module 2	
Systems Engineering Management: Managing systems development and risks,	
Work breakdown structure (WBS), System Engineering Management Plan	
(SEMP), Risk Management, Organization of Systems Engineering,	
Identify the system: stakeholder identification and management, boundary	
diagram and context diagram, affinity diagram, converging and diverging view-	
point analysis, functional analysis, Functional flow diagram.	08 Hours/ L3

Requirement Management: Holistic Requirement Model: Operational	
Requirement Systems Requirements, Functional Requirements, Non -Functional	
Performance requirements, Non-Functional Implementation requirements.	
System Textual analysis, Writing requirements.	
Requirement Analysis: Requirement Uncertainty, Failure Model Effect	
Analysis, Risks and Mitigation plan	
Module 3	
Concept Definition and Selection: Selecting the system concept, Concept	
selection, Concept validation, System Development planning, System Functional	
Specifications. Functional Means Analysis, Analytical Hierarchy Process. Pugh	
Matrix. P-Diagram and Design of Experiment	08 Hours/ L3
Advanced Development: Reducing program risks, functional Safety risks, Risk reduction, Prototype development, Development testing, Introduction to Safety Critical System Design – SAE ARP 4754, RTCA DO-178 Standards. problems.	
Module 4	
Engineering Design: Implementing the System Building blocks, requirements	
analysis, Requirement flow at subsystem and component level, Functional	
breakdown, Detailed design - Functional analysis and design, Component design,	
Design validation, Configuration Management, problems.	08 Hours/L2
SystemVerification & Validation: Verification & Validation, Methods of verification, Verify by Design, Verify by numerical assessment, Verify by component testing, Verify by Integration testing, Verify by System testing.	
Module 5	
Production: Introduction to DFX (DFM, DFR, DFC, DFT etc), Systems Engineering	
	08 Hours/L2
Production operations, Acquiring a production knowledge base, problems.	

CO607A.1	Understand the Life Cycle of Systems.					
CO607A.2	Explain the role of Stake holders and their needs in organizational systems.					
CO607A.3	Develop and Document the knowledge base for effective systems					
	engineering processes.					
CO607A.4	Apply available tools, methods and technologies to support complex high					
	technology systems.					
CO607A.5	Create the frameworks for quality processes to ensure high reliability of					
	systems.					

Ref	erence Books:
1.	Systems Engineering - Principles and Practice, Alexander Kossoaikoff, William N
	Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B.
	Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von
	Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition,
	2010,
	Prentice
	Hall, Saddle River, NJ, USA

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks		
	CIE Test-1				
CIE	CIE Test-2	40	50		
	CIE Test-3				
	Quiz /AAT	10			
SEE	Semester End Examination	50	50		
	Grand Total				

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO607A.1	1	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	1
CO607A.2	-	2	3	-	1	1	1	1	1	1	2	-
CO607A.3	-	3	-	-	-	2	2	1	-	3	2	-
CO607A.4	-	-	2	1	-	-	-	-	-	-	-	-
CO607A.5	1	1	-	2	-	1	2	-	3	-	-	-
Average	1	3	3	2	1	2	2	1	3	3	2	1

High-3: Medium-2: Low-1

SEMESTER – VI ABILITY ENHANCEMENT COURSE

COURSE: VIRTUAL AIRCRAFT SIMULATION

Course Code	ANE23607B	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Remember the terminologies of virtual aircraft simulation
CO2	Understand the virtual aircraft simulation environment and settings Implement the skills of virtual flying

Content	No. of Hours/ RBT levels
Module 1	
Introduction to virtual Aviation, Aviation rules and Organization	08 Hours/ L2
Module 2	
Air Traffic Control, Radio Communication from Pilot	08 Hours/ L2
Module 3	
Flight Mode Annunciator mode English, Flight Instruments and their working principles	08 Hours/ L2
Module 4	
Flight Instrument Essentials, Aviation Meteorology	08 Hours/ L2

Module 5 Practice of Flight Simulator X installation and Settings

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO607B.1	Use the settings and controls of virtual aircraft simulation
CO607B.2	Plan the new flying path for a specific situation
CO607B.3	Fly an aircraft virtually

Suggested Learning Resources:

Books

- 1. Flight Simulation Virtual Environments in Aviation By Alfred T. Lee, ISBN 9781138246195 Published September 9, 2016 by Routledge
- 2. Principles of Flight Simulation, David Allerton, ISBN: 978-0-470-75436-8

Web links and Video Lectures (e-Resources):

- https://www.flightsimulator.com/
- https://www.youtube.com/watch?v=EOeDTr1x3XI

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Head of the Department
Dept. of Aeronautical Engineering
Global Academy of Technology
R.R. Nagar, Bengaluru - 560 098.

08 Hours/ L2

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks		
	CIE Test-1				
CIE	CIE Test-2	40	50		
	CIE Test-3				
	Quiz /AAT	10			
SEE	Semester End Examination	50	50		
	Grand Total				

CO-PO mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO607B.1	1	-	-	-	-	1	1	-	1	-	1	1
CO607B.2	-	2	3	-	1	-	-	1	-	-	2	-
CO607B.3	-	3	-	-	-	2	2	1	-	3	2	-
Average	1	3	3		1	2	2	1		3	2	1

SEMESTER – VI ABILITY ENHANCEMENT COURSE

COURSE: INTRODUCTION TO SWARM DRONE

Course Code	ANE23607C	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Understand what is Swarm Drone
CO2	Learn the construction of Swarm
CO3	Acquire skill of assembly and flying swarm

Content	No. of Hours/ RBT levels
Module 1	
Introduction of swarm or fleet of Unmanned Aerial Vehicles (UAVs), Classification,	08 Hours/ L2
Fully autonomous, semiautonomous, single layered, multi-layered	
Module 2	
Vertically hover, take-off, and land (VTOL), remote control operations, or	08 Hours/ L2
autonomously by using processors deployed on the drones, Military and Civil	
Application, Innovative Research and commercial application of Swarm	
Module 3	
Application Areas, Security, Survey, Monitoring, and Surveillance, Leisure Pursuit,	08 Hours/ L2
Disaster Management, Environmental Mapping, Search and Rescue (S&R)	
Module 4	
Description of Sensors, Existing Control Approaches, Autonomous Swarms	08 Hours/ L2
Module 5	
Battery Swapping/Recharging, Surveillance Systems, Swarm Design, Management,	08 Hours/ L2
and Optimization	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO607C.1	Apply the concept of swarm drone design				
CO607C.2	Develop swarm of drone				
CO607C.3	Test fly the drone				

Books

- 1. UAV Swarm Networks: Models, Protocols, and Systems, Edited By Fei Hu, Dong Xiu Ou, Xin-lin Huang, ISBN 9780367519988
- 2. Swarm Engineering, https://spie.org/news/swarm-engineering?SSO=1

Web links and Video Lectures (e-Resources):

- https://www.coursera.org/learn/robotics-flight
- https://www.geopoliticalmonitor.com/warfare-evolved-drone-swarms/
- https://www.forbes.com/sites/davidhambling/2021/03/01/what-are-drone-swarms-andwhydoes-everyone-suddenly-want-one/

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO607C.1	1	1	1	-	1	1	-	-	1	1	-	1
CO607C.2	-	2	3	-	1	-	-	1	-	-	2	-
CO607C.3	-	3	-	-	-	2	2	1	-	3	2	-
Average	1	2	3		1	1		1			2	1

SEMESTER – VI ABILITY ENHANCEMENT COURSE

COURSE: MULTI-DISCIPLINARY RESEARCH IN AERONAUTICAL ENGINEERING

Course Code	ANE23607D	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Understand the multi-disciplinary research
CO2	Gather knowledge on multi-disciplinary research
CO3	Articulate on the data collection, analysis and interpretation

Content	No. of Hours/ RBT levels
Module 1	
Introduction to multi-disciplinary research	08 Hours/ L2
What to research and how to find out more, What is a research objective and a research question, How to formulate a research objective and a research question?	
Module 2	
Phases and methods of scientific research, Experimental/Study design, Data collection, Evaluation, validation and verification, Research ethics and human resource research ethics	08 Hours/ L2
Module 3	
Research method selection and study design: Qualitative methods, Quantitative methods, Mixed method approaches	08 Hours/ L2
Module 4	
Data collection and analysis: Data collection and data management, Data analysis (qualitative and quantitative), Data interpretation, how to validate and verify data	08 Hours/ L2

Module 5

Research management, documentation and publishing, Research plan writing

08 Hours/ L2

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO607D.1	Apply the concepts of the multi-disciplinary research					
CO607D.2	Examine the data collected					
CO607D.3	Implement the multi-disciplinary research					

Suggested Learning Resources:

Books

- 1. Multi-Disciplinary Research & Innovation by Dr. Gajanan S. Futane (Author)
- 2. Contemporary Multi-Disciplinary Research Dimension by Wakil Kumar Yadav (Author)

Web links and Video Lectures (e-Resources):

- https://www.lawctopus.com/academike/multidisciplinary-research/
- https://research.ncsu.edu/rdo/the-difference-between-multidisciplinary-interdisciplinary-andconvergence-research/

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO607D.1	1	-	-	-	-	1	-	-	-	-	-	1
CO607D.2	1	2	3	ı	1	ı	ı	1	1	ı	2	-
CO607D.3	-	3	-	-	-	2	2	1	1	3	2	-
Average	1	3	3		1	2	2	1		3	2	1

SEMESTER – VI

COURSE: INDIAN KNOWLEDGE SYSTEM

Course Code	BIKK23609	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	0	Examination Hours	03

Pre-requisite: Nil

Course objectives: This course will enable students to

CLO1	To facilitate the students with the concepts of Indian traditional knowledge and to make
	them understand the Importance of roots of knowledge system
CLO ₂	To make the students understand the traditional knowledge and analyse it and apply it to
	their day-to-day life.

Module-1 Introduction to Indian Knowledge Systems (IKS): Overview, Vedic Corpus Philosophy, Character scope and importance, traditional knowledge vis-a-vi indigenous knowledge, traditional knowledge vs. western knowledge.	TT /DDT
Module-2 Traditional Knowledge in Humanities and Sciences: Lingistics, Number and measurements- Mathematics, Chemistry, Physics, Art, Astronomy, Astrology, Craft and Trade in India and Engineering and Technology	II /I 2
Module-3 Traditional Knowledge in Professional domain: Town planning and architectur Construction, Health, wellness and Psychology-Medicine, Agriculture, Governanc and public administration, United Nations Sustainable development goals.	TT /T 2

Reference Books:

- 1. Introduction to Indian Knowledge System- concepts and applications, B Mahadevan, Vinayak Rajat Bhat, Nagendra Pavana R N, 2022, PHI Learning Private Ltd, ISBN-978-93-91818-21-0
- 2. Traditional Knowledge System in India, Amit Jha, 2009, Atlantic Publishers and Distributors (P) Ltd., ISBN13: 978-8126912230,
- 3. Knowledge Traditions and Practices of India, Kapil Kapoor, Avadesh Kumar Singh, Vol. 1, 2005, DK Print World (P) Ltd., ISBN 81-246-0334,

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO609.1	Provide an overview of the concept of the Indian Knowledge System and it
	importance.
CO609.2	Appreciate the need and importance of protecting traditional knowledge.
CO609.3	Recognize the relevance of Traditional knowledge in different domains.
CO609.4	Establish the significance of Indian Knowledge systems in the contemporary world

Scheme of Examination:

Semester End Examination (SEE):

SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CVE	CIE Test-2	40	
CIE	CIE Test-3	40	50
	Assignments	10	
SEE	Semester End Examination	50	50
	Grand Total	100	

CO/PO	PO6
CO 1	3
CO 2	3
CO 3	3
CO 4	3
Average	3

Low-1: Medium-2: High-3

SEMESTER -V

COURSE: UNIVERSAL HUMAN VALUES

Course Code	UHV23511	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	0	Examination Hours	03

Course Objectives:

CLO1	To create an awareness on Engineering Ethics and Human Values.
CLO2	To understand social responsibility of an engineer.
CLO3	To appreciate ethical dilemma while discharging duties in professional life.

Content	No. of Hours
Module 1 INTRODUCTION TO VALUE EDUCATION: Value Education, Definition, Concept and Need for Value Education. The Content and Process of Value Education. Basic Guidelines for Value Education. Self-exploration as a means of Value Education. Happiness and Prosperity as parts of Value Education.	05 Hours
Module 2 HARMONY IN THE HUMAN BEING: Human Being is more than just the Body. Harmony of the Self ('I') with the Body. Understanding Myself as Co-existence of the Self and the Body. Understanding Needs of the Self and the needs of the Body. Understanding the activities in the Self and the Body.	05 Hours
Module 3 HARMONY IN THE FAMILY AND SOCIETY AND HARMONY IN THE NATURE: Family as a basic unit of Human Interaction and Values in Relationships. The Basics for Respect and today's Crisis: Affection, e, Guidance, Reverence, Glory, Gratitude and Love. Comprehensive Human Goal: The Five Dimensions of Human Endeavour. Harmony in Nature: The Four Orders in Nature. The Holistic Perception of Harmony in Existence.	05 Hours
Module 4 SOCIAL ETHICS: The Basics for Ethical Human Conduct. Defects in Ethical Human Conduct. Holistic Alternative and Universal Order. Universal Human Order and Ethical Conduct. Human Rights violation and Social Disparities.	05 Hours
Module 5 PROFESSIONAL ETHICS: Value based Life and Profession. Professional Ethics and Right Understanding. Competence in Professional Ethics. Issues in Professional Ethics The Current Scenario. Vision for Holistic Technologies, Production System and Management Models.	05 Hours

	Understand the significance of value inputs in a classroom and start applying them
	in their life and profession
CO511.2	Distinguish between values and skills, happiness and accumulation of physical facilities, the
	Self and the Body, Intention and Competence of an individual, etc.
CO511.3	Understand the role of a human being in ensuring harmony in society and nature.
CO511.4	Distinguish between ethical and unethical practices and start working out the strategy
	to actualize a harmonious environment wherever they work.

Textbooks:

- 1. A.N Tripathy, New Age International Publishers, 2003.
- 2. Bajpai. B. L, New Royal Book Co, Lucknow, Reprinted, 2004
- 3. Bertrand Russell Human Society in Ethics & Politics

Reference Books:

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. Corliss Lamont, Philosophy of Humanism Gaur. R.R., Sangal. R, Bagari G.P, A Foundation Course in Value Education, Excel Books, 2009.
- 4. Gaur. R.R., Sangal R, Bagaria G.P, Teachers Manual, Excel Books, 2009.
 - 5. I.C. Sharma, Ethical Philosophy of India, Nagin & co, Julundhar William Lilly-Introduction to Ethics -Allied Publisher

Scheme of Examination:

There is no Semester End Examination for this course. The assessment is based on Continuous Internal Evaluation only.

Continuous Internal Evaluation (CIE):

CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and two tests. Two quizzes are to be conducted and each quiz is evaluated for 5 marks adding up to 10 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. Typical Evaluation pattern for this course is shown in Table 1.

Table 1: Distribution of weightage for CIE

	Component	Marks	Total Marks	
CIE	CIE Test-1	40	100	
CIE	CIE Test-2	40	1100	
	Quiz 1/AAT	10		
	Quiz 2/AAT	10		
Grand Total	•	•	100	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO511.1	-	-	-	-	-	2	3	3	3	3	-	-	+	-
CO511.2	-	-	-	-	-	2	3	3	3	3	-	-	-	-
CO511.3	_	-	-	_	-	2	3	3	3	3	-	-	-	-
CO511.4	-	-	-	-	-	2	3	3	3	3	-	-	+	-
Average	-	-	-	-	-	2	3	3	3	3	-	-	+	

VII SEMESTER

SEMESTER VII

COURSE: AVIONICS AND SYSTEMS

Course Code	ANE23701	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: NIL

Course Objectives: To enable students to apply the knowledge of Avionics in broad

domain of Aeronautical Engineering by making them to learn:

CLO1	To know about the basics of avionics and its need for civil and military aircrafts
CLO2	To impart knowledge about the avionic architecture and various avionics data buses
CLO3	Knowledge on various avionics subsystems
CLO4	Learn about different navigation systems
CLO5	Learn about air data systems and auto pilot

Content	No. of Hours/RBT levels
Module 1	
Introduction to Avionics Buses: Avionics Bus Architecture-Digital Data Buses,	
Fibre Optic Buses.	08 Hours/L2
Module 2	
Flight Sensors and Displays: Air Data Sensing, Air Data Computer, Magnetic Sensing – Magnetic Heading Reference System (MHRS), Inertial Sensing, Radar Altimeter (RADALT), Doppler Radar, Weather Radar - Cathode Ray Tube (CRT), Active-Matrix Liquid Crystal Display (AMLCD), Head Down Display (HDD), Head Up Display (HUD), Helmet Mounted Display (HMD), Integrated Standby Instrument System (ISIS). Direct voice input (DVI), Touch Screen, HOTAS.	08 Hours/L2
Module 3	
Digital Electronics & Antennas: Introduction to VLSI, Frequency and its types,	
Antenna-types, radiation pattern, voltage and current distribution, polarization and its	08 Hours/L2
application in navigation and communication.	
Module 4	
	08 Hours/L2
Communication and Automatic Flight Control: Satellite Communication, Terrain	
communication, Air Traffic Control (ATC) Transponder, Traffic Collision &	

Avoidance System (TCAS), Identification of Friend & Foe (IFF). Emergency locator transmitters Longitudinal, Lateral & Direction Autopilot.	
Module 5	
Navigation: Automatic Direction Finding, Very High Frequency Omni-Range (VOR), Distance Measuring Equipment (DME), Tactical Air Navigation (TACAN), VORTAC (VOR+TACAN), Hyperbolic navigation, Satellite Navigation System-Global Positioning System (GPS), Differential GPS, Instrument Landing System (ILS), Transponder Landing System (TLS), Microwave Landing System (MLS), Laser based landing and RF based landing system, Astronavigation.	10 Hours/L2

List of Experiments

- 1. Determination of velocity and range of the target using radar.
- 2. Estimation of RPM and time period of oscillation using radar.
- 3. Display the orientation of the control surface & change the orientation of control surface to stabilize the aircraft.
- 4. Sense the temperature and pressure of cabin and provide alarm during emergency.
- 5. Configuration and Data transfer using MIL-STD-1553.
- 6. Configuration and Data transfer using ARINC 429.
- 7. Configuration and Data transfer using AFDX.
- 8. Perform on board communication using satellite communication.
- 9. Determination of aircraft attitude using Inertial navigation system.
- 10. Demonstrate the application of GPS system.
- 11. Estimation of distance or altitude measurement of the aircraft.
- 12. Study of different types of Antennas.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO701.1	Describe the avionics buses and their application in aircraft.
CO701.2	Understand modern Aviation sensors and display system.
CO701.3	Familiarize about antenna technologies used for aviation
CO701.4	Describe about the different communication and automatic flight control systems
CO701.5	Identify and understand the use of navigation

Textbooks:

1. Albert Helfrick.D., "Principles of Avionics", Avionics Communications Inc., 2004.

2. Collinson. R.P.G. "Introduction to Avionics", Chapman and Hall, 1996.

Reference books:

- 1. Middleton, D.H., Ed., "Avionics systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1989.
- 2. Pallet.E.H.J., "Aircraft Instruments and Integrated Systems", Pearsons, Indian edition 2011.
- 3. Spitzer, C.R. "Digital Avionics Systems", Prentice-Hall, Englewood Cliffs, N.J., U.S.A. 1993.
- 4. Spitzer. C.R. "The Avionics Handbook", CRC Press, 2000.
- 5. S Nagabhushana and N Prabhu, "Principles of Modern Avionics", I. K. International Pvt Ltd, distributed by Wiley, Edition 2019.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 50 marks each. Marks scored in each test is reduced to 20 and added to test component.

CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and twotests.

Two quizzes are to be conducted and each quiz is evaluated for 5 marks adding up to 10Marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	20	
CIE	CIE Test-2	20	50
	Quiz 1/AAT	05	
	Quiz 2/AAT	05	
SE	Semester End Examination	50	50
Е			
	Grand		100
	Total		

CO/PO N	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO701.1	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO701.2	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO701.3	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO701.4	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO701.5	2	3	1	-	-	-	-	-	-	1	-	1	2	1
Average	2	2	1							1		1	2	1

Low-1: Medium-2: High-3

SEMESTER VII

COURSE: COMPUTATIONAL FLUID DYNAMICS

Course Code	ANE23702	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Learning Objectives: Enable students to gain a comprehensive understanding of CFD theory, its mathematical foundations, and practical applications, enabling them to solve complex fluid dynamics problems using computational methods.

CLO1	Understand the Fundamentals of CFD, Derive the Governing Equations,
	Explore Shock Capturing and Shock Fitting methods
CLO2	Classify Partial Differential Equations (PDEs), Analyse their Case Studies
CLO3	Understand Finite Difference Methods, Explore Time and Space Marching,
	Implement Numerical Schemes
CLO4	Recognize Grid Generation Methods, Explore Structured/Unstructured Grids,
	Evaluate Grid Quality and Adaptive Grids:
CLO5	Understand finite volume techniques, applications and their solution schemes

CONTENT	No. of Hrs /RBT Levels
MODULE 1	
INTRODUCTION AND GOVERNING EQUATIONS: CFD ideas to	
understand, CFD Application, Need for high-speed Parallel Computing,	8 Hours
Substantial derivative, Divergence of velocity, Flow models, Continuity	L5
Equation, Momentum Equation, and Energy Equations in various forms.	
Physical Boundary conditions. Shock capturing, Shock fitting.	
MODULE 2	
MATHEMATICAL BEHAVIOUR OF PARTIAL DIFFERENTIAL	
EQUATIONS: Classification of partial differential equations – Cramer Rule,	
Eigenvalue method. Hyperbolic, parabolic, and elliptic form of equations.	
Impact of classification on physical and computational fluid dynamics. Case	8Hours
studies-steady inviscid supersonic flow, unsteady inviscid flow, steady	L4
boundary layer flow, unsteady thermal conduction, and steady subsonic	
inviscid flow.	
MODULE 3	
DISCRETIZATION TECHNIQUES: Finite differences methods and	
difference equations. Explicit and Implicit Approach Errors and stability analysis	S
Time marching and space marching. Reflection boundary condition. Relaxation	
techniques. Successive over relaxation/under relaxation. Second order Lax-	L4
Wendroff method, mid-point Leap frog method, Alternating Direction Implicit	
(ADI) Method, upwind scheme, numerical viscosity, and artificial viscosity.	
MODULE 4	
GRID GENERATION AND ADAPTIVE GRID METHODS: Need for grid generation and Body-fitted coordinate system. Structured Grids-essential feature Structured Grid generation techniques- algebraic and numerical methods.	8 Hours
Unstructured Grids-essential features. Unstructured Grid generation techniques- Delaunay-Voronoi diagram, Advancing Front Method (AFM). multi-block gride generation, Surface grid generation, multi-block grid generation, and meshless methods. Grid quality, adaptive grids and Adaptive Structured Grid Generation, Unstructured adaptive grid Methods.	1.5
MODULE 5	
FINITE VOLUME TECHNIQUES AND APPLICATIONS: Spatial	
discretization- cell centered and cell vertex techniques (overlapping control	8 Hours
volume, dual control volume). Temporal discretization- Explicit time stepping, and implicit time stepping. Time step calculation.	L3
Applications: Aspects of numerical dissipation & dispersion. Approximate	
factorization, Flux Vector splitting. Diffusion problem	

CO702.1	Appraise the concepts of CFD and derive the related Governing Equations.	L5
	Classify the PDEs based on their mathematical behavior vis a vis nature of flow	L4
	Analyze FDM techniques for Time/Space marching and numerical schemes.	L4
CO702.4	Evaluate the Grid generation and utilization techniques used in CFD	L5
CO702.5	Apply Spatial/Temporal discretization in FVM applications.	L3

Textbooks:

- 1. Anderson, J.D., "Computational Fluid Dynamics the basics with applications", McGraw-Hill, 1995.
- 2. Versteeg, H.K. and Malalasekara, W. "Introduction to Computational Fluid Dynamics: The Finite Volume Method". Second Edition (Indian Reprint) Pearson Education.
- 3. Dale A. Anderson, John C. Tannehill, Richard H. Pletcher, Munipalli Ramakanth, Vijaya Shankar, "Computational Fluid Mechanics and Heat Transfer", 4th edition, CRC Press, https://doi.org/10.1201/9781351124027, eBook ISBN 9781351124027, 2020

Reference books:

- 1. John F. Wendt, "Computational Fluid Dynamics: An Introduction" third edition, Springer, 2008
- 2. Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, reprint 2017.
- 3. Ferziger, J. H. and Peric, M. Computational Methods for Fluid Dynamics. Third Edition, Springer Verlag, Berlin
- 4. S. C Gupta, "Applied Computational Fluid Dynamics" Publisher-Wiley, 2019; ISBN, 8126587571, 9788126587575

Web references/ Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/112/105/112105045/.
- 2. https://nptel.ac.in/courses/112/105/112105254/._

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
GTE.	CIE Test-1	40	50
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	100		

CO/PO Mapping

COURSE OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO702.1	3	3	2	2	1	-	-	_	1	1	-	1	2	2
CO702.2	3	3	2	2	1	-	_	_	1	1	-	1	2	2
CO702.3	3	3	2	2	1	1	_	_	1	1	1	1	2	2
CO702.4	3	3	2	2	1	-	_	_	1	1	-	1	2	2
CO702.5	3	3	2	2	1	-	_	_	1	1	-	1	2	2
Average	3	3	2	2	1	-	-	-	1	1	-	1	2	2

Low-1: Medium-2: High-3

SEMESTER VII

COURSE: SPACE MECHANICS

Course Code	ANE23703	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

COURSE LEARNING OBJECTIVES:

CLO1	To introduce the basic concepts of astronomy
CLO2	To understand the motion of the space craft in their relative gravitational filed
CLO3	Learn about the satellite injection and perturbation in various orbits
CLO4	To provide insight of interplanetary spacecraft mission.
CLO5	Understand the Ballistic Missile Trajectories and Re-entry phase.

Content	No. of Hours/ RBT levels
Module 1 INTRODUCTION TO SPACE MECHANICS: Basic concepts: The solar system, Reference frames and coordinate systems, The celestial sphere, The ecliptic, Motion of vernal equinox, Sidereal time, Solar Time, Standard Time, The earth 's atmosphere.	08 Hours/L3
Module 2 THE GENERAL N- BODY PROBLEM: Conic Sections, Two-Body Problem, Conservation of Angular Momentum and Energy, Kepler's laws of planetary motion and proof of the laws, Trajectory Equation, Elliptical Orbit, Circular Orbit, Parabolic Trajectory, Hyperbolic Trajectory, the circular restricted three body problem—the general N-body problem.	10 Hours/L3
Module 3 SATELLITE INJECTION AND SATELLITE PERTURBATIONS: Classical Orbital Elements, Time of Flight, General aspects of satellite injection – satellite orbit transfer, Hohmann Transfer – orbit deviations due to injection errors – special and general perturbations – method of variations of orbital elements.	08 Hours/L3

Module 4 INTERPLANETARY TRAJECTORIES: Introduction, Patched-Conic Method, concept of sphere of influence – launch of interplanetary spacecraft – trajectory estimation about the target planet, Phase Angle at Departure, Planetary Arrival, Gravity Assists.	08 Hours/L3
Module 5 ATMOSPHERIC ENTRY: Introduction to ballistic missile trajectories – Entry Flight Mechanics—Ballistic Entry—Gliding Entry—Skip Entry—Entry Heating—Space Shuttle Entry.	08 Hours/L3

CO703.1	Understand the basic Concepts in Orbital Mechanics and Attitude Dynamics.
CO703.2	Analyze the Orbital motion of a satellite relative to their gravitational body.
CO703.3	Understand the Orbital elements to define the shape, size and orientation of an orbit
	for satellite injection.
CO703.4	Estimate the trajectory/orbit of a space vehicle or a satellite in a suitable coordinate system.
CO703.5	Understand the Ballistic Missile Trajectories and Re-entry phase.

Textbooks:

- 1. David A. Vallado., "Fundamentals of Astrodynamics and Applications" Microcosm Press Hawthorne, CA.
- 2. Craig A. Kluever, "Space Flight Dynamic" John Wiley & Sons, Inc, 2018.

Reference books:

- 1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co.,Ltd, London, 1982
- 2. Howard D. Curtis., "Orbital Mechanics for Engineering Students" Second Edition, Elsevier Ltd

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Total
Marks
50
50
50
100
_

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	60d	PO10	PO11	PO12	PSO1	PSO2
CO703.1	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO703.2	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO703.3	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO703.4	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO703.5	3	3	2	-	1	-	-	-	-	-	-	-	3	-
Average	3	3	2	-	1	-	-	-	-	-	-	-	3	

Low-1: Medium-2: High-3

SEMSTER VII

Project Phase II

Course Code	ANEP23706	CIE Marks	100
Hours/Week (L: T: P)	0:0:12	SEE Marks	100
No. of Credits	6	Examination Hours	03

CONTENT	No. of Hours/ RBT levels
	RD1 levels
a. Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior	
faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates using Rubrics.	08 Hours
b. Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.	
The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates as per Rubrics covering all Program Outcomes.	
SEE for Project Work Phase - II a. Single discipline: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department. b. Interdisciplinary: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong.	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

Able to make comprehensive use of the technical knowledge gained from previous
CO706.1 courses
Able to understand technologies concerned with the project
CO706.2
Able to apply project management skills (scheduling work, procuring parts and
documenting expenditures and working within the confines of a deadline).
CO706.3
Able to analyze, develop and demonstrate the proposed work
CO706.4
Able to communicate technical information by means of ethical writing and
CO706.5 presentation.

Table 1: Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	Review-1		
CIE	Review-2	100	100
SEE	Semester End Examination	100	100
Grand Total	·		200

CO/PO	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO706.1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO706.2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO706.3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO706.4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO706.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Low-1: Medium-2: High-3

SEMSTER VII PROFESSIONAL ELECTIVE III

COURSE: AIRCRAFT MAINTENANCE, REPAIR AND OVERHAUL

Course Code	ANE23704A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

COURSE LEARNING OBJECTIVES: To enable students to apply the knowledge of aircraft maintenance, overhaul and repairs in broad domain of aeronautical engineering by making them to learn:

	the control of the co
CLO1	Explain about ground handling procedures and precautions, engine starting procedures.
CLO2	Gain thorough understanding about the ground servicing of sub systems in Aircraft and shop
	safety during maintenance
CLO3	Get a clear idea about the FAA airworthiness regulations and the checklist involved in each
	inspection of aircraft
CLO4	About the welding in aircraft structural components & sheet metal repair and
	maintenance
CLO5	Explain about various tools used, terminology and specifications involved in Aircraft
	hardware selection and fluid line fittings.

Content	No. of Hours/ RBT levels
Module 1	08 Hours/ L2
AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT: Moorin	
jacking, leveling and towing operations - Preparation - Equipment - precautions	
Engine starting procedures - Piston engine, turboprops and turbojets - Engine fi	
extinguishing - Ground power units.	
Module 2	
GROUND SERVICING OF VARIOUS SUB SYSTEMS AND SAFET	08 Hours/ L2
MAINTENANCE: Air conditioning and pressurization - Oxygen and oil systems	
Ground units and their maintenance. Shop safety - Environmental cleanliness	
Precautions	
Module 3	08 Hours/ L2
INSPECTION: Process - Purpose - Types - Inspection intervals - Techniques	
Checklist - Special inspection - Publications, bulletins, various manuals - FAR A	
worthiness directives - Type certificate Data Sheets - ATA specifications	
Module 4	08 Hours/ L2
WELDING AND REPAIR IN AIRCRAFT STRUCTURAL COMPONENTS	
Equipment used in welding shop and their maintenance - Ensuring quality welds	
Welding jigs and fixtures - Soldering and brazing. Inspection of damage - Classification	
- Repair or replacement - Sheet metal inspection - N.D.T. Testing - Riveted repa	
design, Damage investigation - reverse technology. Reliable quality.	

183

Module 5

AIRCRAFT HARDWARE, MATERIALS, SYSTEMS PROCESSES:

Hand tools - Precision instruments - Special tools and equipment in an airplar 10 Hours/ L2 maintenance shop - Identification terminology - Specification and correct use of variou aircraft hardware (i.e. nuts, bolts, rivets, screws etc.) - identification of all types of fluiline fittings. Materials, metallic and non-metallic - Plumbing Connectors - Cables Swaging procedures, tests, Advantages of swaging over splicing

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO704A.1	understand ground handling procedures and precautions, engine starting procedures
CO704A.2	understand about the ground servicing of sub systems in Aircraft and safety precautions
CO704A.3	To know about the FAA airworthiness regulations and the checklist involved in each inspection of aircraft
CO704A.4	Describe welding process sheet metal repair used I aircraft maintenance
CO704A.5	understand various tools used, terminology and specifications involved in Aircraft hardware selection and fluid line fittings

Textbooks:

- 1. Michael J. Kroes, William A. Watkins, Frank Delp, Ronald Sterkenburg, "Aircraft Maintenance and Repair", McGraw-Hill, Seventh Edition, 2013.
- 2. Kinnison H A, "Aviation Maintenance Management", McGraw-Hill, Second Edition, 2013.
- 3. McKinley J L, Bent R D, "Maintenance and Repair of Aerospace Vehicles", Northrop Institute of Technology, McGraw-Hill, 1967.

Reference books:

- 1. Friend, C H, "Aircraft Maintenance Management", Longman, 1992.
- 2. Patankar M S and Taylor J C, "Risk Management and Error Reduction in Aviation Maintence", Ashgate ISBN 0-7546-1941-9, 2004.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

184

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks				
	CIE Test-1						
CIE	CIE Test-2	40	50				
	CIE Test-3]					
	Quizzes /Assignment	10					
SEE	Semester End Examination	50	50				
Grand To	Grand Total						

CO/PO N	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO704A.		2	1	1	-	1	1	1	-	-	-	1	2	-
CO704A.		2	-	-	-	-	1	1	-	-	-	1	2	-
CO704A.		2	1	1	-	1	1	1	-	-	-	1	2	-
CO704A.	3	2	-	-	-	1	ı	ı	-	-	-	1	2	-
CO704A. 5	3	2	_	_	-	-	-	-	-	-	-	1	2	_
Average	3	2										1	2	

Low-1: Medium-2: High-3

SEMSTER VII PROFESSIONAL ELECTIVE III

COURSE: WIND TUNNEL TECHNIQUES

Course Code	ANE23704B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

COURSE LEARNING OBJECTIVES:

CLO1	Understand the basic of wind tunnel testing.
CLO2	Understand the types and functions of wind tunnel.
CLO3	Acquire the knowledge on conventional measurement techniques and special wind tunnel

	No. of Hours/ RBT levels
Module 1 Principles of Model Testing: Buckingham Theorem, Non-dimensional numbers, Sca effect, Geometric Kinematic and Dynamic similarities.	08 Hours/ L2
Module 2 Wind Tunnels: Classification - Special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions — Water tunnels: Advantages, limitations and configurations for aeronautical and non-aeronautical applications — Layouts -Sizing, design parameters and loss estimation. Model making; Use of CFD in wind tunnel and water tunnel design.	08 Hours/ L2
Module 3 Calibration of Wind Tunnels: Test section speed, Horizontal buoyancy, Floangularities, Flow uniformity & turbulence measurements, Associated instrumentatio Calibration of subsonic & supersonic tunnels.	
Module 4 Conventional Measurement Techniques: Force measurements and measuring systems, Multi component internal and external balances, Pressure measurements system, Steady and Unsteady Pressure, single and multiple measurements, Velocimeasurements, Intrusive and Non-intrusive methods, Flow visualization technique surface flow, oil and tuft, flow field visualization, smoke and other optical armonintrusive techniques.	08 Hours/ L2
Module 5 Special Wind Tunnel Techniques: Intake tests, store carriage and separation test Unsteady force and pressure measurements, wind tunnel model design.	10 Hours/ L2

186

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO704A.1	Apply the principles and procedures for model testing in the wind tunnel.
CO704A.2	Classify the types and functions of wind tunnel.
CO704A.3	Distinguish the conventional measurement techniques and special wind tunnel techniques

Textbooks

- 1. Rae W.H. and Pope. A, "Low Speed Wind Tunnel Testing", John Wiley Publication, 3rd edition, 2010, ISBN-13: 978-8126525683.
- 2. Pope. A and Goin. L, "High Speed Wind Tunnel Testing", John Wiley, 1985.

Reference Books

- 1. E. Radhakrishnan, Instrumentation, Measurements, and Experiments in Fluids, CRC Press, 2007.
- 2. Bradsaw "Experimental Fluid Mechanics", Pergamon Press, 2nd revised edition, 1970, ISBN-13: 9780080069814.
- 3. Short term course on Flow visualization techniques, NAL, 2009.
- 4. Lecture course on Advanced Flow diagnostic techniques, NAL.

NAL-UNI Lecture Series 12:" Experimental Aerodynamics", NAL SP 98 01 April 1998.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand T	otal		100

187

CO/PO N	CO/PO Mapping													
~~~	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO704B	3	2	-	-	-	-	-	-	ı	-	-	1	2	-
1														
CO704B	3	2	-	-	-	-	-	-	-	-	-	1	2	-
2 2 7 2 4 7														
CO704B	3	2	-	-	-	-	-	-	-	-	-	1	2	-
3														
Average	3	2										1	2	

Low-1: Medium-2: High-3

# SEMSTER VII PROFESSIONAL ELECTIVE III

**COURSE: THEORY OF VIBRATION** 

Course Code	ANE23704C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre requisite: Aircraft Structures-I,II

**Course Learning Objectives:** To enable students to apply the knowledge Theory of Vibration in broad domain of aeronautical engineering by making them to learn:

CLO1	Basic concepts of vibrations, types of vibrations.
CLO2	Understand the working principle of vibration measuring instruments.
CLO3	Differentiate types of vibrations - according to dampness and particle motion.
CLO4	Acquire the knowledge of numerical methods for multi-degree freedom systems.
CLO5	To study the aero elastic effects of aircraft wing.

Content	No. of Hours/ RBT levels
Module 1  INTRODUCTION: Types of vibrations, S.H.M, principle of super position	08 Hours/
applied to Simple Harmonic Motions, Fourier theorem and simple problems.	L3
Module 2	
UNDAMPED FREE VIBRATIONS: Single degree of freedom systems.	
Undamped free vibration, natural frequency of free vibration, Spring and	
Mass elements, effect of mass of spring, Compound Pendulum.	
DAMPED FREE VIBRATIONS: Single degree of freedom systems	08 Hours/
different types of damping, concept of critical damping and its importance study of response of viscous damped systems for cases of under damping critical and over damping, Logarithmic decrement.	L3
Module 3	08 Hours/

189

FORCED VIBRATION: Single degree of freedom systems, steady state	L3
solution with viscous damping due to harmonic force. Solution by Complex	
algebra, reciprocating and rotating unbalance, vibration isolation,	
transmissibility ratio due to harmonic excitation and support motion.	
Module 4	
SYSTEMS WITH TWO DEGREES OF FREEDOM: Introduction, principle modes and Normal modes of vibration, co-ordinate coupling,	08 Hours/
generalized and principal co-ordinates, Free vibration in terms of initial	L3
conditions. Applications: Vehicle suspension, Dynamic vibration absorber	
and Dynamics of reciprocating Engines.	
Module 5	
MULTI DEGREES OF FREEDOM SYSTEMS: Introduction, Influence	
coefficients, Maxwell reciprocal theorem, Dunkerley's equation.	
Orthogonality of principal modes, Method of matrix Iteration-Method of	08 Hours/
determination of all the natural frequencies using sweeping matrix and Orthogonality principle. Holzer's method, Stodola method.	L3

# **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO704C.1	Understand the basic concepts of vibrations.
CO704C.2	Formulate the mathematical models for Undamped and damped mechanical vibrations Systems.
CO704C.3	Formulate the mathematical models for forced vibrations Systems
CO704C.4	Predict the frequency response for mechanical vibration systems under loading conditions
CO704C.5	Analyze the multi-degree freedom systems.

# **Textbooks:**

- 1. Grover. G.K., "Mechanical Vibrations", 7th Edition, Nem Chand Brothers, Roorkee, India, 2003.
- 2. V.P. Singh., "Mechanical Vibrations", DhanpatRai & Company Pvt. Ltd, 2016.

190

#### **Reference books:**

- 1. Thomson W T, 'Theory of Vibration with Application' CBS Publishers, 1990.
- 2. Bisplinghoff R.L., Ashely H and Hogman R.L., "Aeroelasticity", Dover Publication, New York, 1983.
- 3. Leonard Meirovitch, "Elements of Vibration Analysis". McGraw Hill International Edition, 2007.

#### **Scheme of Examination:**

#### **Semester End Examination (SEE):**

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

#### **Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 mark

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks				
			Iviaiks				
	CIE Test-1						
CIE	CIE Test-2	40	50				
	CIE Test-3						
	Quizzes /Assignment	10					
SEE	Semester End Examination	50	50				
Grand Total							

191

#### **CO-PO MAPPING**

				CO/F	O Ma	pping	3							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO704C.1	3	3	1	_		_	_	_	_	-	-	_	3	-
CO704C.2	3	3	1	-	_	-	-	-	-	<u> </u>  -	-	-	3	-
CO704C.3	3	3	1	-	-	-	-	-	-	-	-	_	3	_
CO704C.4	3	3	1	-	-	-	-	-	-	-	-	-	3	_
CO704C.5	3	3	1	-	-	-	-	-	-	-	-	_	3	-
Average	3	3	1	-	-	-	-	_	-	-	-	-	3	-

Low-1: Medium-2: High-3

# SEMSTER VII PROFESSIONAL ELECTIVE III CIVIL AVIATION RULES AND REGULATION

Course Code	ANE23704D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre requisite: NIL

**Course Learning Objectives:** To enable students to apply the knowledge of Civial aviation requirements in broad domain of Aeronautical Engineering by making them to learn:

CLO1	knowledge of Indian Aircraft Rules 1937 and related publication
CLO2	knowledge CAR series B and C (MEL, cockpit and emergency check list and
	Defects rectification and analysis)
CLO3	knowledge CAR series E for approval of organizations: in various categories and
	CAR series M.
CLO4	The knowledge CAR145, CAR -21 Type certificate and Noise certificate

192

CLO5	The knowledge C.A.R. series F airworthiness and continued airworthiness,
	Registration / deregistration of aircraft, Micro light and Hot air balloons,
	Issue/Renewal and Suspension of Special Certificate of Airworthiness

Content	No. of
	Hours/RBT levels
Module 1	
INDIAN AIRCRAFT RULES 1937 AND RELATED PUBLICATIONS:	
Knowledge of aircraft act, 1934, aircraft rules, 1937 as far as they related to airworthiness and safety of aircraft. Knowledge of civil airworthiness requirements, aeronautical information circulars, aeronautical information publications- (relating to airworthiness), advisory circulars & A.M.E. notices (NOTAMS) by DGCA	L3
Module 2	
C.A.R. SERIES "B "and "C": C.A.R. series "B" Minimum Equipment List (MEL), preparation and use of cockpit check list and emergency check list. C.A.R. series 'C' – Defect recording, reporting, investigation, rectification and analysis	L3
Module 3	
C.A.R. SERIES "E": C.A.R. Series E- approval of organizations: Approval in categories E & G;CAR M- Objective, Definitions, Continuing Airworthiness Requirement.	
Module 4	
C.A.R. SERIES CAR 145: General, Scope, Terms of Approval, Facility Requirement, Personnel Requirement, Certifying Staff, Safety and Quality policy, maintenance procedures and quality system. CAR -21, Type certificate, Noise certificate.	L3
Module 5	
C.A.R. SERIES "F": C.A.R. SERIES "F" Airworthiness and continued airworthiness: Procedure relating to Registration / deregistration of aircraft, , Issue/validation and suspension of Certificate of Airworthiness, Special Flight permits, Airworthiness requirements for Gliders, Design, Manufacture, Registration and Operation of Micro light Aircraft., Requirements for	08 Hours/

193

manufacture, registration and airworthiness control of hot air balloons, Age of Aircraft to be imported for Scheduled / Non-Scheduled including Charter,

General Aviation and other Operations, Issue/Renewal and Suspension of Special Certificate of Airworthiness.

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO704D.1	Should be able to have the knowledge of Indian Aircraft Rules 1937 and related publication				
CO704D.2	Should be able to have the knowledge CAR series B and C (MEL, cockpit and emergency check list and Defects rectification and analysis)				
CO704D.3	Should be able to have the knowledge CAR series E for approval of organizations: in various categories and CAR series M.				
CO704D.4	Should be able to have the knowledge CAR145, CAR -21 Type certificate and Noise certificate				
CO704D.5	Should be able to have the knowledge C.A.R. series F airworthiness and continued				
	airworthiness, Registration / deregistration of aircraft, Micro light and Hot air balloons, Issue/Renewal and Suspension of Special Certificate of Airworthiness				

#### **Textbooks:**

1. Aircraft manual (India) volume – latest edition, the English book store, 17-l, Connaught circus, New Delhi.

#### **Reference books:**

1. Civil aviation requirements with latest amendment (section 2 airworthiness) – published by DGCA, the English book store, 17-l, Connaught circus, New Delhi.

#### **Scheme of Examination:**

#### **Semester End Examination (SEE):**

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

194

# **Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks.

# Typical Evaluation pattern for regular courses is shown in Table 1. Table 1: Distribution of weightage for CIE& SEE of Regular courses

	Component	Marks	Total
			Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO704D.1	3	2	-	-	-	-	-	-	2	2	-	-		1
CO704D.2	3	2	-	-	-	-	-	-	2	2	-	-		1
CO704D.3	3	2	-	-	-	-	-	-	2	2	-	-		1
CO704D.4	3	2	-	-	-	-	-	-	2	2	-	-		1
CO704D.5	3	2							2	2				1
Average	3	2	-	-	-	-	-	-	2	2	-	-		1

195

# SEMSTER VII OPEN ELECTIVE II

**COURSE: DRONE TECHNOLOGY** 

Course Code	ANE23705A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	<b>Examination Hours</b>	03

**Course Objectives:** To enable students to apply the knowledge of Introduction to UAV in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To Identify & select different types of drones, drone rules and regulations			
CLO2	Select different drone parts and to understand aerodynamics			
CLO3	Understand BLDC motors and different type of batteries			
CLO4	Understand different sensors and Flight Control System			

Content	No.of Hours/ RBT levels
Module 1  Introduction: Different types of Drones, Nomenclatures, History of aerial drones, reputation, airframe, Configurations, basic components, current/future uses of	10 Hours L1, L2, L3
drones. DGCA regulations, Zones, Digital Sky, Type Certification and RPTO	11, 12, 13
Module 2  Air vehicle: Understanding Aerial platforms. Types of drones. Introduction to aerodynamics, Newton's Laws of Motion, Bernoulli's Principle, four forces of Fight, three axes of Fight, how they apply to drone Flight. Drone Configurations, Launch and Recovery Systems	8 Hours L1, L2, L3
Module 3  Propulsion system: Introduction to different electric motors like DC, BLDC, servo motors, working, understanding its functioning, speed torque characteristics, degree of freedom in drone. Introduction Electronic Speed Controller. Performing payload calculation, speed control techniques, thrust to weight ratio.	8 Hours L1, L2, L3
Module 4  Battery System: Introduction of different types of batteries used in drone.  Understand different specifications and their significance of batteries. Different charging circuits or batteries, battery management system (BMS) and Building Blocks of BMS.	8 Hours L1, L2, L3

196

#### Module 5

**Sensors:** Accelerometers, types, Inertial measurement units, tilt and lidar sensor, gyro sensor. Principle of operation, their roles and characteristics. Introduction to Flight controller system, Auto pilot

8 Hours L1, L2, L3

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO705A.1	Select different types of drones and drone rules and regulations
CO705A.2	Explain the forces acting on Drone during flight
	Identify the Drone electric motor components
CO705A.4	Choose the suitable battery for Drone Propulsion
CO705A.5	Illustrate the different sensors and Flight Control System

#### **Textbooks:**

- 3. The Drone Rules, 2021. The Gazette of India: Extraordinary [Part II—Sec. 3(i)].
- 4. John Baichtal "Building Your Own Drones" A Beginner's Guide to Drones, UAVs, and ROVs Que Publishing, ISBN 9780789755988
- 5. Julio Alberto Mendoza "Drones to Go" A Crash Course for Scientists and Makers, Apress ISBN-978-1-4842-6787-5

#### **Reference books:**

- 4. Paul Gerin Fahlstrom, Thomas James Gleason, Introduction to UAV Systems, Wiley Publication John Wiley & Sons, Ltd, 4th Edition 2012.
- 5. Landen Rosen, Unmanned Aerial Vehicle, Alpha Editions, N.Y., 2012
- 6. Valavanis, Kimon P, Unmanned Aerial Vehicles, Springer, 2011.
- 7. Valavanis, K., Vachtsevanos, George J, Unmanned Aerial Vehicles, Springer, 2015.

#### **Scheme of Examination:**

#### **Semester End Examination (SEE):**

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

#### **Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

197

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

# **CO/PO Mapping**

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO705A.	3	-	-	-	-	-	1	1	1	1	-	1	2	-
CO705A.	3	-	1	-	1	1	1	1	1	1	1	1	2	1
CO705A.	3	-	1	-	-	-	-	-	1	1	-	1	2	-
CO705A.	3	-	1	-	-	-	1	-	1	1	-	1	2	-
CO705A.	3	-	-	-	-	-	-	-	1	1	-	1	2	-
Average	3		1				1	1	1	1		1	2	

Low-1: Medium-2: High-3

# SEMSTER VII OPEN ELECTIVE II

# **COURSE: AIR TRAFFIC AND WEATHER**

Course Code	ANE23705B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	<b>Examination Hours</b>	03

Course Objectives: This course will enable students to

	- · · · · · · · · · · · · · · · · · · ·
CLO1	Understand the Air Traffic Control
CLO2	Acquire Knowledge on the weather condition for flight traffic
CLO3	Remember the symbols of ATC for different weather conditions

Content	No. of Hours/RBT levels
Module 1  The earth's atmosphere, Temperature, Atmospheric Pressure and Altimetry, Wind,	08 Hours/
moisture, cloud formation, precipitation, Stable and Unstable Air, clouds, Air masses and Fonts.	L2
Module 2	00 11
Turbulence, Icing, Thunderstorm, High Altitude Weather, Arctic weather, Tropical Weather	08 Hours/ L2
Module 3	
Problems- Traffic, Weather, Congestion, Air traffic flow management, Airport	
capacity, Traffic Management	
Overview	
Basic Traffic Management Techniques and Terms Ground Delay Programs	08 Hours/
(GDP) Time-based Flow	<b>L2</b>
Management (TBFM) Traffic Management Advisor (TMA) Airspace Flow	
Programs (AFP) Ground Stops (GS) Adaptive Compression (AC) Integrated	
Collaborative Rerouting (ICR) Delay Tier Information Operational	
Information System (OIS)	

Module-4	
Weather Tools De-icing/Anti-icing Severe Weather Avoidance Plan (SWAP)	
Routes Preferred Routes Coded Departure Routes (CDR) National Playbook	08 Hours/ L2
Flow Evaluation Area (FEA)/Flow Constrained Area (FCA), Global air-traffic	
management	
Module 5	
Call signs, Technology, Air Navigation Service providers and Air traffic service	
providers, Privatization ATC regulations Weather Conditions Worldwide,	08 Hours/
METAR, Cloud reporting Abbreviation.	L2

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO705B.1	Implement the knowledge during the Air Traffic Control
CO705B.2	Analyse the weather condition for flight traffic
CO705B.3	Apply the symbols of ATC for different weather conditions

#### **Suggested Learning Resources:**

#### **Text Books**

- 1. Mastering the Systems: Air Traffic Control and Weather by Richard L. Collins
- 2. Aviation Weather for Pilots and Flight Operation Personnel Gordon Press Publishers

#### **Reference Books**

1. New Concepts and Methods in Air Traffic Management by Amedeo R Odoni, Springer 2. Air Traffic Control by Max Mulder, published by InTech

#### Web links and Video Lectures (e-Resources):

 $\underline{https://www.ll.mit.edu/about/facilities/air-traffic-control-automation-aviation-weather-\underline{decisionsupport-laboratories}}$ 

#### Scheme of Examination:

#### **Semester End Examination (SEE):**

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

#### Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	100		

CO/PO	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO705B.	3	2	-		ı	-	-	ı	1	1	-	1	2	-
СО705В.	3	2	-	-	1	-	-	1	1	1	1	1	2	-
2														
CO705B.	3	2	-	-	-	-	-	-	-	1	-	1	2	_
3														

Low-1: Medium-2: High-3

# SEMESTER VII OPEN ELECTIVE II

### **COURSE: SPACE TECHNOLOGIES**

Course Code	ANE23705C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	<b>Examination Hours</b>	03

# Course Objectives: To enable students to understand the innovations in space technologies

CLO1	To provide an understanding of space missions, including types and space
	environment considerations, and to introduce the fundamentals of rocket propulsion
	To introduce different re-entry techniques, including steep ballistic, orbital, skip,
CLO2	and "double-dip" re-entries, as well as aero-braking and lifting body re-entries
CLO3	To provide a foundation in orbital mechanics, covering two-body motion, orbital
	elements, ground trace, in-plane orbit changes, transfer maneuver's
~~ ~ .	To explain the dynamics of satellite attitude control, including torque-free
CLO4	axisymmetric rigid body motion, attitude control for spinning and non-spinning
	spacecraft
CLO5	To introduce the architecture of supporting ground systems and team interfaces for
	space missions

Content	No. of Hours/ RBT levels
Module 1	
Fundamentals of Rocket Propulsion and Trajectories: Space Mission- Types-Space environment-launch vehicle selection.; Introduction to rocket propulsion - fundamentals of solid propellant rockets- Fundamentals of liquid propellant rockets - Rocket equation, Two-dimensional trajectories of rockets and missiles -Multistage Rockets -Single stage to orbit- Sounding Rocket -Aerospace plane Gravity turn trajectories-Impact point calculation-Injection conditions-Flight dispersions	10 Hours/L2
Module 2 Atmospheric Re-entry: Introduction-Steep ballistic re-entry-Ballistic orbital re-entry-Skip re-entry- "Double- Dip" re-entry - Aero-braking - Lifting body re-entry	10 Hours/L2

Module 3 Fundamentals of Orbital Mechanics, Orbital Maneuver's: Two-body motion-circular, elliptic, hyperbolic, and parabolic orbits-Basic orbital elements-Ground trace. In-Plane orbit changes-Hohmann Transfer-Bi-elliptical transfer-Plane changes- Combined maneuver's Propulsion for maneuvers	10 Hours/L2
Module 4 Satellite Attitude Dynamics: Torque free axisymmetric rigid body-Attitude control for spinning spacecraft - Attitude control for non-spinning spacecraft - The Yo-Yo mechanism - Gravity - Gradient Satellite-Dual spin spacecraft-Attitude determination	10 Hours/L2
Module 5 Space mission Operations: Supporting ground system architecture and team interfaces - Mission phases and core operations- Team responsibilities - Mission diversity - Standard operations practices	10 Hours/L2

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO705C.1	Comprehend various types of space missions, make informed decisions regarding launch vehicle selection, understand the basics of rocket propulsion
CO705C.2	Explain the principles and methods of various atmospheric re-entry techniques, and understand their applications in space missions
CO705C.3	Have a strong grasp of orbital mechanics, be capable of calculating and planning various orbital maneuvers
CO705C.4	Analyze and control the attitude of satellites in different scenarios, understand the dynamics of various satellite configurations
CO705C.5	Proficient in understanding the ground systems and team structures necessary for space missions, recognize the roles and responsibilities of team members

#### **Textbooks:**

- 1. Spaceflight Dynamics', W.E. Wiesel, 3rd edition, McGraw-Hill, 2010
- 2. Elements of Space Technology for Aerospace Engineers', Meyer Rudolph X, Academic Press, 1999
- 3. Fundamentals of Space Systems', Vincet L. Pisacane, Oxford University Press, 2005

#### **Reference books:**

1. 'Rocket Propulsion and Space flight dynamics', Cornelisse JW, Schoyer HFR, and Wakker KF, Pitman, 1984

- 2. Understanding Space: An Introduction to Astronautics', J. Sellers, 2nd edition, McGraw-Hill, 2004
- 3. 'Introduction to Space Flight', Francis J Hale, Prentice-Hall, 1994
- 4. 'Spacecraft Mission Design', Charles D. Brown, AIAA Education Series, 1998

#### **Scheme of Examination:**

**Semester End Examination (SEE):** 

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

#### **Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks			
CIE Test-1					
CIE Test-2	40	50			
CIE Test-3					
Quiz 1/AAT	10				
Semester End Examination	50	50			
Grand Total					
	CIE Test-1  CIE Test-2  CIE Test-3  Quiz 1/AAT  Semester End Examination	CIE Test-1  CIE Test-2  CIE Test-3  Quiz 1/AAT  Semester End Examination  10  50			

# **CO/PO Mapping**

	CO/PO Mapping													
CO/PO	P01	P02	P03	P04	P05	90d	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO705C.1	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705C.2	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705C.3	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705C.4	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705C.5	3	3	-	-	-	-	-	-	-	-	-	1	2	-
Average	3	3	-	-	-	-	-	-	-	-	-	1	1	-

Low-1: Medium-2: High-3

# SEMESTER VII OPEN ELECTIVE II

# COURSE: AVIATION AND INTERNET INFRASTRUCTURE

Course Code	ANE23705D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	<b>Examination Hours</b>	03

Course Objectives: To enable students to understand the innovations in space technologies

CLO1	Understand the need for the flight 4.0
CLO2	Gain Knowledge on both aviation and its internet infrastructure
CLO3	Understand the operation and working principle of internet infrastructure

Content	No. of Hours/ RBT levels
Module 1  The Aerospace Sector, Aerospace Transformation through Industry 4.0 technologies, Flight 4.0: The changing Technology Landscape, The Internet: An Introduction	10 Hours/L2
Module 2  Advances in Avionics Platforms: Multicore systems, Emerging trends in Avionics Networking, Internet Infrastructure working principle	10 Hours/L2
Module 3  IoT and Service Oriented Infrastructure for Flight 4.0, Big Data and Data Analytics in Aviation, Ontologies in Aeronautics, TCP/IP, In-Flight Wi-Fi	10 Hours/L2
Module 4  Advances in Software Engineering and Aeronautics, Autonomy and Safety of Unmanned Aircraft Systems	10 Hours/L2
Module 5  Aerospace Engineering Curricular Expansion in Information Systems, Networking, Web services, Cloud Computing	10 Hours/L2

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

	Analyse the need for the flight 4.0
CO705D.2	Implement Knowledge on both aviation and its internet infrastructure
CO705D.3	Modify the operation and working principle of internet infrastructure

#### **Suggested Learning Resources:**

#### **Text Books**

- 1. Advances in Aeronautical Informatics- Technology towards Flight 4.0 by Umut Durak, Springer
- 2. Principles of flight 4.0 by ISBN 9788281070318, 8281070315

#### **Reference Books**

1. Aircraft Technology by Melih Cemal Kushan

#### Web links and Video Lectures (e-Resources):

 $\frac{https://www.coursera.org/lecture/cybersecurity-policy-aviation-internet/l26-internetinfrastructure-vCsja}{}$ 

#### **Scheme of Examination:**

#### **Semester End Examination (SEE):**

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

#### **Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks		
	CIE Test-1				
CIE	CIE Test-2	40	50		
	CIE Test-3				
	Quiz 1/AAT	10			
SEE	Semester End Examination	50	50		
	Grand Total				

# **CO/PO Mapping**

	CO/PO Mapping													
CO/PO	PO1	P02	P03	P04	P05	90d	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO705D.1	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705D.2	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO705D.3	3	3	-	-	-	-	-	-	-	-	-	1	2	-
Average	3	3	-	-	-	-	-	-	-	-	-	1	1	-

Low-1: Medium-2: High-3

#### **SEMESTER VIII**

#### **COURSE: INTERNSHIP AND TECHNICAL SEMINAR**

Course Code	ANE123803	CIE Marks	100
Hours/Week (L: T: P)	0:0:12	SEE Marks	100
No. of Credits	10	<b>Examination Hours</b>	-

#### Internship:

All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. Internship examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

#### **COURSE OUTCOMES:** Upon completion of this course, student will be able to:

CO803.1	Analyze and review various research papers to identify Aeronautical related topic
CO803.2	Understand new trends in Aeronautical field having cutting edge technologies in the selected topic
CO803.3	Impart skills in preparing detailed report describing the topic and results
CO803.4	Able to summarize the industrial Exposure and practices
CO803.5	Able to communicate technical information by means of ethical writing and presentation.

#### **CIE** procedure for Internship:

The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Internship shall be based on the evaluation of Internship report, presentation skill and question and answer session in the ratio 50:25:25.

#### **SEE for Internship:**

Contribution to the Internship and the performance of each Student shall be assessed individually in the semester end examination (SEE) conducted at the department.

# Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total
	1		Marks
CIE			50
	Review-2	50	
SEE	Semester End Examination	50	50
	100		

CO/PO M	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO803.1	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO803.2	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO803.3	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO803.4	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO803.5	1	1	1	3	3	2	2	3	3	3	3	-	3	3
Average	1	1	1	3	3	2	2	3	3	3	3	-	3	3

Low-1: Medium-2: High-3

#### **SEMESTER-VIII**

#### **COURSE: INTERNSHIP+SEMINAR**

Course Code	22ANEI83	CIE Marks	100
Hours/Week (L: T: P)	0:0:4	SEE Marks	
No. of Credits	2	Examination Hours	03

#### **Internship:**

All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. Internship examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

#### **Course Outcomes**

Course Out	comes								
	Analyze and review various research papers to identify Aeronautical								
CO86.1	related topic								
	Understand new trends in Aeronautical field having cutting edge								
CO86.2	technologies in the selected topic								
CO86.3	Impart skills in preparing detailed report describing the topic and results								
CO86.4	Able to summarize the industrial Exposure and practices								
	Able to communicate technical information by means of ethical writing and								
CO86.5	presentation.								

#### **CIE** procedure for Internship:

The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Internship shall be based on the evaluation of Internship report, presentation skill and question and answer session in the ratio 50:25:25.

#### **SEE for Internship:**

Contribution to the Internship and the performance of each Student shall be assessed individually in the semester end examination (SEE) conducted at the department.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
CIE	Review-2	50	50

SEE	Semester End Examination	50	50
	Grand Total		100

CO/PC	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	3	3	2	2	3	3	3	3	_	3	3
CO2	1	1	1	3	3	2	2	3	3	3	3	_	3	3
CO3	1	1	1	3	3	2	2	3	3	3	3	_	3	3
CO4	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO5	1	1	1	3	3	2	2	3	3	3	3	-	3	3

Low-1: Medium-2: High-3

H. Y. Rajas Leakon Sheas

Dean Academic

Global Academy of Tool

Rajara, Ishwarinagar, Bengaturu-98

Head of the Department

Dept. of Aeronautical Engineering Global Academy of Technology

R.R. Nagar, Bengaluru - 560 098.

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

212