III to VIII Semester Scheme & Syllabus

(2022-2023) Department of Aeronautical Engineering

SCHEME AND SYLLABUS

Aeronautical Engineering

GLOBAL ACADEMY OF TECHNOLOGY (Autonomous Institution affiliated to VTU Belagavi) Accredited by NAAC with 'A' grade, NBA Accredited CS, E&C, E&E, MECH and IS branches) Ideal Homes Township, Raja Rajeshwari Nagar, Bengaluru-560098.

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengalura - 560 098

PREAMBLE

There has been a lot of discussion on the current mode of engineering education in our country and its impact on employability of fresh engineering graduates. Employability rating of fresh graduates is far from being satisfactory and industries are running short of trained and skilled manpower.

The demands of the society are dynamic, complex and keep changing at a rapid pace. Technological advancement is providing several innovations and breakthroughs exponentially in IT related domains like Artificial intelligence, Internet of Things, Machine learning, Automation and Robotics. These interventions are changing further the expectations of the society on products and services. In view of this, it becomes imperative to equip students to learn the art of linking science and engineering to the needs of the industry and society. The students must relate their learning to provide solutions to complex and real-life problems faced by the society. Engineering education needs to focus on how to apply knowledge to complex, unstructured problems in a global platform. The herculean task ahead of the engineering institutions is to produce graduates who are employable. Employability does not mean that a student should be placed in an industry before he/she leaves the portals of an institution. Employability means equipping engineering graduates with necessary technical skills, communication skills, leadership qualities, soft skills, professional ethics, and a social responsibility.

The onus of providing graduates with the attributes mentioned above lies with the institutions. Institutes should create conducive atmosphere where students learn to stimulate their creativity and develop their talents. The graduates must be trained to work in teams and must be exposed to interdisciplinary areas to establish better links with present generation industries. The domain boundaries have collapsed and most of the engineering streams are getting integrated and blended. It is therefore crucial that the graduates must be made to understand the nuances of the engineering education and the importance of creative thinking, innovation and being sensitive to societal changes.

Global Academy of Technology (GAT) has understood the importance of broad-based education and has created a conductive environment for the students to blossom into complete individuals. A true broad-based education prepares students for life, without losing their areas of specialization and competence. Our aim is to become a premier institution imparting quality education in engineering and management to meet the changing needs of the industry and society. The entire team at GAT is committed to realize the dream of making GAT an institution of eminence and creating an indelible impression in the area of engineering education.

The present focus of the institute is to improve the laboratory infrastructure by bringing new industry relevant technology to enable higher level of learning in students, foster integrated learning by providing multiple industry relevant interfaces, enable students to take up industry relevant projects and encourage faculty to take up research by providing ability to add customer logic.

With changing times and emergence of disruptive technologies, GAT stands strong in adapting and encompassing these into the mainstream in shaping students' career, thus contributing directly to society and nation building.

Head of the Department Dept. of Aeronautical Engineering

Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Contents

SI.	No.	Details	Page No.
	1	Global Academy of Technology- An overview	5
	1.1	Vision of the Institute	5
	1.2	Mission of the Institute	5
	1.3	Objectives	5
	1.4	Quality Policies	5
	1.5	Hallmarks of Global Academy of Technology	6
	2	Department of Aeronautical Engineering	
	2.1	Vision of the Department	7
	2.2	Mission of the Department	7
	2.3	About the Department	8
	3	Salient features of Autonomy	
	3.1	Outcome Based Education (OBE)	9
	3.2	Advantages of Outcome Based Education	10
	3.3	Program Outcomes (POs) as prescribed by National Board of Accreditation (NBA)	10
	3.4	Program Specific Outcomes (PSO)	11
	3.5	Some Definitions	11
	3.6	Choice Based Credit System (CBCS)	12
	3.7	Credit Definition	12
	3.8	Credit Distribution among Curricular components	13
	4	Scheme	15
4.1	III ser	nester Scheme	16
4.2	IV set	nester Scheme	16
	V sem	nester Scheme	17
	VI ser	nester Scheme	18
	VII se	emester Scheme	20
	VIII se	emester Scheme	21

5	Detailed Syl	labus - III Semester							
	Course Code	Course							
5.1	22MAT31C	Complex Variables and Probability	22						
5.2	22ANE32	Fluid Mechanics	25						
5.3	22ANE33	Solid Mechanics	29						
5.4	22ANE34	Aero Thermodynamics	34						
5.5	22ANE35	Aerospace Materials & Digital Manufacturing	38						
5.6	22AEC36	Ability Enhancement Course	41						
5.7	22VAC37	Electricals and Electronics for Aeronautics							
6	Detailed Syl	llabus - IV Semester							
	Course Code Course								
6.1	22MAT41X	Transforms Calculus and Numerical Techniques	52						
6.2	22ANE42	55							
6.3	22ANE43	60							
6.4	22ANE44	Aircraft Structures – I	63						
6.5	22ANE45	Advanced Drone Technology	67						
6.6	22ANE46	CAAD	71						
6.7	22VAC47	System Engineering for Aeronautical Engineers	75						
7	Detailed Syll	abus - V Semester							
	Course Code	e Course							
7.1	22ANE51	Aviation Management and Economics	80						
7.2	22ANE52	High-Speed Aerodynamics	83						
7.3	22ANE53	Aircraft Structures –II	87						
7.4	22ANEL54	89							
7.5	22ANE55X	102							
7.6	22ANEMP56	Mini Project	92						
7.7	22BRMIK57 Research Methodology								
7.8	22CIVK58	Environmental Science	97						
		or							

7.9	22UHV57	Universal Human Values	113						
8	Detailed Sylla	bus - VI Semester							
	Course Code	Course							
8.1	22ANE61	Finite Element Methods	117						
8.2	22ANE62	Flight Mechanics	120						
8.3	22ANE63X	Professional Elective -II	129						
8.4	22ANE64X	Open Elective I	138						
8.5	22ANEP65	Major Project Phase I	125						
	22ANEL66	Flight Simulation Lab	127						
8.6	22ANE67	Ability Enhancement Course III	153						
8.9	22BIKK68	Indian Knowledge System	163						
9	Detailed Syllabus - VII Semester								
	Course Code	Course							
9.1	22ANE71	Avionics And Systems	167						
9.2	22ANE72	Computational Fluid Dynamics	170						
9.3	22ANE73	Aircraft Design							
9.4	22ANE74X	Professional Elective III	176						
9.5	22ANE75X	Open Elective II	187						
9.6	22ANEP76	Major Project Phase II	174						
10	Detailed Sylla	bus - VIII Semester							
	Course Code	Course							
10.1	22ANE81X	Aircraft Design							
10.2	22ANE82X	Program Elective IV							
10.3	22ANEI83	Internship, Technical Seminar (Industry /Research)	199						
10.4	22ANE84	Project work phase – II							

1. Global Academy of Technology

(Autonomous Institution under Visvesvaraya Technological University, Belagavi)

An Overview

1.1 Vision of the Institute:

Become a premier institution imparting quality education in engineering and management to meet the changing needs of society.

1.2 Mission of the Institute:

- Create environment conducive for continuous learning through quality teaching and learning processes supported by modern infrastructure.
 - Promote Research and Innovation through collaboration with industries.
 - Inculcate ethical values and environmental consciousness through holistic education programs.

1.3 Objectives:

- With a very firm resolve, Global Academy of Technology is continuously investing untiring efforts to enable students to:
- Develop careers in Government and Private engineering organizations and other
- professionally related domains.
- Pursue higher studies and research to develop innovative solutions and technologies in engineering and other multi-disciplinary areas.
- Improve professional and personal traits oriented towards professional ethics and environmental compulsions.
- Inculcate professional leadership and successful entrepreneurship qualities.
- Help society in raising the quality of life.

1.4 Quality Policies:

- Providing Excellent Education Through High Quality, Experienced and Committed Faculty.
- Evolving creative processes for optimal Knowledge and Skill Transfer.
- Building up state-of-the-art infrastructure at par with international standards.
- Creating an environment for holistic personality development and develop

research temperament.

1.5 Hallmarks of Global Academy of Technology:

- Proactive management determined to build the institute as a Centre of Excellence in engineering education.
- Qualified and dedicated faculty in all the departments.
- State of the art Infrastructure and up to date laboratory and Library facilities.
- Lush green campus with an environment of tranquility and harmony.
- Student centric teaching-learning processes banking on Outcome Based Education;
- students' friendly learning atmosphere.
- Emphasis on Project based learning throughout the course.
- Strong Industry-Institute interface with more than twenty Memorandum of Understanding
- (MOUs) signed with leading industries and institutions of repute.
- Indian Institute of Information Technology (IIIT), Allahabad, has signed a MOU for providing internships to students of GAT, research assistance to faculty, and conducting Faculty Development Programs in key areas of IT Big Data, Cloud Computing, Artificial Intelligence, and Machine Learning.
- Mahatma Gandhi University, Kottayam, has signed a MOU to facilitate research in Nano Technology and provide research assistance to faculty of GAT.
- Industrial consultancy undertaken in many departments.
- Excellent Placement with more than 80% of the eligible students placed in leading IT
- companies, core industries and Start-up companies.
- Holistic and integrated training modules covering communication skills, leadership skills, soft skills and technical skills through professional trainers.
- On campus and off campus internship facilities.
- Robust parent connects and Student counselling system.
- In-house technical skill training programs/add on courses to enhance the

employability of the students.

- Strong and growing alumni connect in place
- Exclusive Research and Development, Industry–Institute Interaction Cell and Teaching and Learning Centre in place.
- Rainwater harvesting facility in the campus.

The following academic processes are implemented on a regular basis to sustain a meaningful and proactive teaching-learning environment:

• Emphasis on continuous revision of the curriculum, based on feedback from the students

and input from industry, alumni, and other stakeholders.

- Conduction of regular training programme for faculty, technical & supporting staff.
- Conduction of Academic Audit of each department on an annual basis.
- Under open electives students have the options to study subjects offered by other departments to augment their interdisciplinary knowledge.
- Students have to do value added courses, mandatory courses, certificate courses, and become members of professional bodies, etc.
- Advanced and enrichment courses are offered as Electives during the final year UG and PG Degree Programmes.
- Self-Learning is encouraged in students through MOOCs, NPTEL/SWAYAM, Coursera, Edex etc. Credit shall be awarded to students for completion of such courses
- 2.0 Department of Aeronautical Engineering

2.1 <u>Vision of the Department:</u>

To emerge as an excellent center for imparting quality education and research to produce competent Aeronautical Engineers to meet the global challenges.

2.2 Mission of the Department:

M1: Empower the students with the fundamental knowledge and skill for a successful career in the field of Aeronautical Engineering, and facilitating them to continue their education through higher studies and Research & Development activities.

M2: Providing state of the art laboratories and infrastructure for academics and research in the areas of Aerodynamics, Structures, Propulsion and control systems.

M3: Enhancing industry-institute interaction leading to interdisciplinary research with social concern to become leaders in industries and/or become entrepreneurs with good ethics.

2.3 About the Department:

The Department of Aeronautical Engineering was established in the year 2020, affiliated to VTU, Belagavi, Karnataka, approved by AICTE. The department offers 4-year undergraduate programme, B.E. in Aeronautical Engineering. The department has a team of highly qualified, dedicated and motivated young and experienced faculties. The Department of Aeronautical Engineering has laboratories catering to students, scholars and faculty members for their academic and research activities. The curriculum is designed to impart engineering knowledge in topics such as Aerodynamics, Aircraft structures, Propulsion, Flight dynamics & Controls and UAVs. Further provision exists to acquire additional engineering knowledge through electives. The department prepares the graduates to undertake design, analysis, experimental and research activities as their careers in aeronautical engineering. The institution is located very closer to many leading aeronautical industries (ISRO, NAL, HAL, ADA, ADE etc.) and IT industries which will benefit the students in terms of collaboration.

The department activities are being monitored by the Department Advisory Board (DAB) and Program advisory committee (PAC) whose members are eminent personalities from industries, government organizations and R&D Sectors. The new initiative of establishing Research Centre in Aeronautical Engineering, GAT would provide researchers a good opportunity for enhancing their Research knowledge and Problem-solving.

3 Salient Features **d**Autonomy

Autonomous institutions occupy pivotal positions and are the key interfaces between the industry and academia. Autonomous institutions can create the key channels required for scientific and industrial research and innovation, inclusive teaching and training, and initiatives to develop the eco system for creating more employment.

Autonomy means freedom and authority in academic matters. Autonomy bestows the teacher with the right to decide what to teach, how to teach, how much to teach and whom to teach.

Autonomy gives the privilege to:

• Run courses relevant to requirements of industries and society at large.

- Design Teaching-Learning methodologies, Assessment Tools and Methods, and Admission policies.
- Create an eco- system for holistic development of the individuals.
- Build strong academia and industry interface.
- Build the reputation of the institution through quality education.
- Industry relevant value-added courses during vacations.
- Internships in Industry/ R&D establishments in summer holidays.
- Building leadership qualities including spirit of tolerance and teamwork.
- There will be a lot of scope for industry- oriented skill development built-in into the system.
- Deliver engineering graduates who can effectively shoulder the responsibility of building a strong and vibrant INDIA.

GAT has Board of Governance, Academic Council, Boards of Studies, Boards of Examination, Finance Committee, and Institute Steering Committee. Stakeholders in these bodies comprise of Academicians, Researchers, Industry Experts, Faculty and Alumni. Governing Body of the autonomous college lays down policies and procedures for Governance of the college carried out through the Principal of the college. Academic Council is the apex academic body of the college responsible for approval of schemes of study, syllabi, examinations and evaluation methods, declaration of results, recommendation of candidates to the University for Award of degrees etc. The college constitutes different Boards of Studies for different branches of engineering. The BOS's are responsible for framing of schemes of study and detailed curricula, academic rules etc. Other bodies like Finance Committee, Recruitment Committee help in administration of the college.

3.1 Outcome Based Education (OBE):

Outcome based education (OBE) is student-centered instruction model that focuses on measuring student performance through outcomes. Outcomes include knowledge, skills and attitude. Its focus remains on evaluation of outcomes of the program by stating the knowledge, skill and behavior a graduate is expected to attain upon completion of a program and after 4 to 5 years of graduation.

The induction of India in the Washington Accord in 2014 with the permanent signatory status of The National Board of Accreditation (NBA) is considered a big leap forward for the higher-education system in India. It means that an Engineering graduate from India can be employed in any one of the other countries who have signed the accord. For Indian Engineering Institutions to get accredited by NBA according to the pacts of the accord, it is compulsory that engineering institutions follow the Outcome Based Education (OBE) model. So, for an Engineering Institution to be accredited by NBA it should compulsorily follow the OBE model.

The OBE model measures the progress of the graduate in three parameters, which are:

- Program Educational Objectives (PEO)
- Program Outcomes (PO)
- Course Outcomes (CO)

Outcome Based Education assesses students' performance, knowledge and skills through quiz, solving puzzles, giving an online presentation, modelling something, taking up a multiple - choice assessment. Assessments are criterion-focused which the students achieve during the learning period. Students are expected to go with the flow, think out of the box in order to implement outcome based education.

Students studying in an accredited program of an institution in India can be confident of getting an education which is of assured quality comparable to global standards. They can compete with their global counterparts for securing jobs in Multi-National Companies and other enterprises across the world. Students can also have global mobility- can work anywhere -in any corner of the globe. In addition, students will have access to the state-of-the-art facility, infrastructure, and access to highly qualified teaching faculty in an accredited program. Students would have acquired "graduate attributes" at the end of the course and will be industry ready. A student can also get into post- graduation and research.

3.2 Advantages of Outcome Based Education:

- Student-centered It is an approach by which the learner's mastery over a particular skill is demonstrated and measured.
- Clarity in focus A learning outcome must be made obvious to the learner even at the outset of learning. This outcomes-based model works on bringing out the specific outcomes from the learners.
- The curriculum is designed with a clear definition, outlining the expected outcomes. This will pave a way to achieve the expanded opportunities in the student's performance.
- Exceeding expectations All students can deliver the highest level of performance. The only kick start needed is to make them believe and encourage, the only way to attain high expectation.
- Expanded opportunities It means giving countless chances and ways to show the students that they have met with their objective. Not all learners learn the same thing, the same way, and at the same time. However, extended opportunities can help achieve high standards. They help students to learn what is mostly needed for the time and hour.

3.3 Program Outcomes (POs) as prescribed by National Board of Accreditation (NBA):

PO1- Engineering knowledge: **Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.**

PO2- Problem analysis: **Identify, formulate, research literature, and analyze complex** engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3- Design/development of solutions: **Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.**

PO4- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5- Modern tool usage: **Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.**

PO6- The engineer and society: **Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.**

PO7- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9- Individual and teamwork: **Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.**

PO10- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11- Project management and finance: **Demonstrate knowledge and understanding of** the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12- Life-long learning: **Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.**

3.4 Program Specific Outcomes

PSO1: Apply the fundamental knowledge of Aerodynamics, Propulsion, Structures and Flight controls to solve core contemporary problems.

PSO2: Develop and use modern engineering tools to design and analyze the simple and complex problems in Aeronautical Engineering.

3.5 Some Definitions:

"Course" is a unit of teaching, which encompasses various topics, that typically lasts one semester, is led by one or more faculty and has a fixed registered student. Course means a subject either theory or practical identified by its title and code number.

"Program" – cohesive arrangements of courses, co- curricular extra-curricular activities to accomplish predetermined objectives leading to award of a Degree.

"Degree"- Academic award conferred upon a student on successful completion of a program designed to achieve the defined attributes.

3.6 Choice Based Credit System (CBCS):

Major Benefits: Major benefits accruing by adopting the Credit System are listed below:

- Quantification and uniformity in the listing of courses for all programs at a college, like core (hard/soft), electives, and project work.
- Ease of allocation of courses under different heads by using their credits to meet national/international practices in technical education.
- Convenience to specify the minimum/ maximum limits of course load and its average per semester in the form of credits to be earned by a student.
- Flexibility in program duration for students by enabling them to pace their course load within minimum/maximum limits based on their preparation and capabilities.
- Wider choice of courses available from any department of the same College or even from other similar Colleges, either for credit or for audit.
- Improved facility for students to optimize their learning by availing of transfer of credits earned by them from one College to another.

As the Credit System has many advantages over the conventional system of organizing academic programs, GAT has introduced an appropriate Choice Based Credit System (CBCS) for the various programs. This will be of great benefit to the students in their preparations to meet the challenging opportunities ahead. In the Credit System, the course work of students is unitized, and each unit is assigned one credit after a student completes the teaching-learning process as prescribed for that unit and is successful

in its assessment. However, there are different definitions followed in academic circles for the size of a unit and in turn, for a credit.

3.7 Credit Definition:

As it is desirable to have uniformity in the definition of credit across all Autonomous Colleges under the University, the following widely accepted definition for credit shall be followed at GAT. This can provide the good flexibility to the students and also strengthens CBCS under the University. Here, one unit of course work and its corresponding one credit (while referring to a Main Semester) shall be equal to:

- I. Theory course conducted for 1 hour/week/ semester;
- **II.** Laboratory course or Tutorial conducted for 2 hours/week/semester. The following additional factors may also be noted in this connection:
- III. The above figures shall be multiplied by a factor of 2 in the case of the Supplementary Semester,
- IV. Other student activities which are not demanding intellectually, or which do not lend to effective assessment, like practical training, study tours, attending guest lectures shall not carry any credit.

Audit Courses: In Addition, a student can register for courses for audit only with a view to supplement his/her knowledge and/or skills. Here also, the student's grades will have to be reflected in the Grade Card. These courses shall not be considered in determining the student's academic performance in the semester. In view of this, it may not be necessary for the college to issue any separate transcript covering the audit courses to the registrants at these courses.

For more details on the academic regulations, students are advised to refer Academic Rules and regulations document available on the college website <u>www.gat.ac.in</u>.

Sl. No.	Curricular Component	Credits allocated	Percentage of allocation
1.	Humanities and Basic Sciences (BS)	6	7
2.	Integrated Professional Courses core including labs (IPC)	32	31
3.	Professional Courses core (PC)	18	21
4.	Emerging Science Course (ESC)	6	5
5.	Ability Enhancement Course (AEC)	6	7
6.	Professional Elective Courses (PEC)	12	13
7.	Open Elective Courses (OEC)	9	5
8.	Project work+ Mini project+ Technical Seminar	15	13
9.	Total	120	100

3.8. Credit Distribution among Curricular components:

Department of Aeronautical Engineering III – VIII Semester SCHEME AND SYLLABUS

Scheme of UG Autonomous Program – 2022 batch

(3rd to 8th Semester)

III SEMESTER

SI.	Course	Course Title	Course	Teaching	T Ho	eachiı urs/W	ng 'eek	Ex	aminat	ion	OPEDITO	
NO ·	Code	Course Thie	Туре	Type Dept.		Т	Р	CIE	SEE	Tot al	CREDITS	
1	22MAT31 C	Mathematics course (Branch Specific)	BS	MAT	2	2	0	50	50	100	3	
2	22ANE32	Fluid Mechanics	IPCC		3	0	2	50	50	100	4	
3	22ANE33	Solid Mechanics	IPCC		3	0	2	50	50	100	4	
4	22ANE34	Aero thermodynamics	PCC		3	1	0	50	50	100	3	
5	22ANE35	Engineering Science Course/Emerging Technology Course*	ESC/ET C/PLC	Respecti ve Department	Respecti ve Department	3	0	0	50	50	100	3
6	22AEC36	Ability Enhancement Course*	AEC		3	0	0	50	50	100	3	
7	22VAC36	Electricals and Electronics for Aeronautics	VAC		1	0	0	-	-	-	0	
						Т	otal	300	300	600	20	

***NPTEL for Credit transfer**: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) taken are as per the recommendation of BOS of respective department. The similarity of the contents as offered by NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need tobe completed before the registration of the elective. Any certificate obtained after the registration of elective would notbe considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The gradeswill be awarded as equivalent to the grades obtained in the NPTEL course.

H. Rajaskeakon Aveaus Dean Academic

Dean Academic Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SI.	Course	Course Title	Course	Teaching	Tea Hou	ching 1rs/W	eek	Exam	ination		CREDITS			
No.	Code		Туре	Dept.	L	Т	Р	CIE	SEE	Tota 1				
1	22MAT4 1C	Mathematics course (Branch Specific)	BS	MAT	2	2	0	50	50	100	3			
2	22ANE42	Low Speed Aerodynamics	IPCC		3	0	2	50	50	100	4			
3	22ANE43	Aircraft Propulsion	IPCC					3	0	2	50	50	100	4
4	22ANE44	Aircraft Structures – I	PC		2	2	0	50	50	100	3			
5	22ANE45	Advanced Drone Technology	ESC/E TC/PL C	Respective Department	Respective Department	Respective Department	2	2	0	50	50	100	3	
6	22ANE46	Ability Enhancement Course*	AEC		2	0	2	50	50	100	2			
7	22ANE47	System Engineering for Aeronautical Engineers	VAC		2	0	0	50	50	100	1			
Tota	I		•	•			•	300	300	600	20			

IV SEMESTER

***NPTEL for Credit transfer**: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) taken are as per the recommendation of BOS of respective department. The similarity of the contents as offered by NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need tobe completed before the registration of the elective. Any certificate obtained after the registration of elective would notbe considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The gradeswill be awarded as equivalent to the grades obtained in the NPTEL course.

H. Rajaskeakon Areans Dean Academic

Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

V SEMESTER

				Teaching	Tea	ching	Hours/W	/eek		Examina	tion		
SI. No ·	Cou	Course Code Course Titl		Department (TD)and Question Paper Setting Board (PSB)	Theory Lecture L	Tutor ial T	Practic/ Drawin g P	Self - Stud y S	Duration in hus	CIE Marks	SEE Marks	Total	Credits
1	HSMS	22ANE5	Aviation Management & Economics		3	0	0		03	50	50	100	3
2	IPCC	22ANE52	High-Speed Aerodynamics		2	2	2		03	50	50	100	4
3	PCC	22ANE5	Aircraft Structures - II	TD: AE	3	2	0		03	50	50	100	3
4	PCCL	22ANEL5	4 Aircraft Structures Lab	PSB: AE	0	0	2		03	50	50	100	1
5	PEC	22ANE55	X Professional Elective – I		3	0	0		03	50	50	100	3
6	PROJ	22ANEM 56	P Mini Project		0	0	4		03	100		100	2
7	AEC	22BRMIK5	7 Research Methodology		3	0	0		03	50	50	100	3
8	MC	22CIVK58	Environmental Studies	TD:CV/Env/ Chem PSB:CV	2	0	0		02	50	50	100	2
9	МС	22NSK59	National Service Scheme (NSS)	NSS coordinator									
-		22PEK59	Physical Education (PE) (Sports and Athletics)	Physical Education Director	0	0	2			100		100	0
		22YOK5	yoga	Yoga Teacher									
				Total						500	300	800	21
	Professio	onal Elect	ve Course – 1*										
	Sl. 1	No. (Course Code	Course Title									
]	1 2	2ANE55A	Composite ma	aterials	and s	tructure	es					
	2	2 2	2ANE55B	Aerospace Pro	opulsio	n							
	3	3 2	2ANE55C	Helicopter Dy	vnamics	5							
	2	1 2	2ANE55D	Aircraft Syste	ms and	l Instr	umenta	tion					

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: This letter in the course code indicates common to all the streams of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

***NPTEL for Credit transfer**: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical)

20

Hor Rajaskeakon Aveaus Dean Academic

Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Binz

taken are as per the recommendation of BOS of respective department. The similarity of the contents as offered by NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need to be completed before the registration of the elective. Any certificate obtained after the registration of elective would not be considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The grades will be awarded as equivalent to the grades obtained in the NPTEL course.

				Teaching		Teachin	g Hours/Week			Examina	ation		
	C	C. J.		Department	Theory		Practic /	Self -					
SI	Cou	rse Code		(TD)and	Lecture	Tutorial	Drawing	Study			SEE		
No			Course Title	Question	L	Т	Р	S	Duration	CIF	Marks		Credits
110			course rule	Paper					in	Marks		Total	cicuits
•				Setting					hours	17141 KS			
				Board									
		1		(PSB)								100	
			Finite		2	2	2		03	50	50	100	4
1	IPCC	22ANE61	Element										
			Methods										
n	DCC		Flight		3	2	0		03	50	50	100	4
2	PCC	ZZANE0Z	Mechanics										
2	DEC		Professional		3	0	0		03	50	50	100	3
3	PEC	ZZANEOJA	Elective - II										
4	OFC	DANE64V	Open Elective	TD	3	0	0		03	50	50	100	3
4	OEC	ZZANE04A	-I	ID: AE,									
5	PROI	22 A NEP65	Major Project	PSB:AE	0	0	6		03	100		100	3
5	I KOJ	ZZANEI 05	Phase – I										
	PC		Flight		0	0	2		03	50	50	100	1
6	CL	22ANEL66	Simulation										
	CL		Lab										
			Ability		If the	e course i	s offered as a T						
		C/ 22ANEL67 C	Enhancement		1	0	0	01	50	50	100	1	
7	AEC/		Course/ Skill		If the	course is	offered as a pra	actical					
	SDC		Development		0	0	0 2						
			Course – III										
			National	NSS			-						
		22NSK68	Service	coordinator	0	0	2			100		100	0
			Scheme										
			(NSS)										
			Physical	Physical									
			Education	Education									
8	MC	22PEK68	(PE) (Sports	Director									
			and										
			Athletics)										
		22YOK68	Yoga	Yoga									
	L			Teacher									
6			Indian		1	0	0		01	50	50	100	0
9	IKS	22BIKK68	Knowledge										
			System										
10	10 UHV	22UHV57	Universal		1	0	0		03	50	50	100	0
10			Human Values			Ŭ	÷			20	20	100	Ŭ
						Tota	ı			500	300	800	19

21

VI SEMESTER

H. Rajaskeakon Areas Dean Academic

Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Head of the Department

Professional Elect	tive Course – II*					
Course Code	Course Title					
22ANE63A	Space Mechanics					
22ANE63B Control engineering and Microprocessors						
22ANE63C Rockets and Missiles						
22ANE63D Flight Testing						
Open Elective Co	urse I					
Course Code	Course Title					
22ANE64A	Introduction to Aeronautics					
22ANE64B	History of aviation					
22ANE64C	Airport planning and management					
22ANE64D	Introduction to Flight Simulator					

Ability 1	Ability Enhancement Course / Skill Enhancement Course – III										
Sl. No.	Course	Course Title									
	Code										
1	22ANE67A	System Engineering for Aeronautical Engineers									
2	22ANE67B	Virtual Aircraft Simulation									
3	22ANE67C	Introduction to Swarm Drone									
4	22ANE67D	AI&ML in Aerospace Application									

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: This letter in the course code indicates common to all the stream of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

*NPTEL for Credit transfer: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) taken are as per the recommendation of BOS of respective department. The similarity of the contents as offered by NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need to be completed before the registration of the elective. Any certificate obtained after the registration of elective would not be considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The grades will be awarded as equivalent to the grades obtained in the NPTEL course.

H. Rajaskeakon Aveaus Dean Academic

Dean Academic Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SCHEME B VII SEMESTER

						Teaching Hours/Week					Examination			
SI. No ·	Code	Course e	Course Title	TD&P SB	Theor y Lectur e	Tutorial	Practic / Drawi ng	Self - Study	Duration in hus	CIE Marks	SEE Marks	Total	Credits	
					L	Т	Р	S						
1	IPCC	22ANE71	Avionics and Systems/ (To be Completed in 5th/6th Semester)	TD:AE, PSB: AE	3	0	2		03	50	50	100	4	
2	IPCC	22ANE72	Computational Fluid Dynamics/ (To be Completed in 5th/6th Semester)		3	0	2		03	50	50	100	4	
3	PCC	22ANE73	Aircraft Design/ (To be Completed in 6th Semester)		3	2	0		03	50	50	100	4	
4	PEC	22ANE74x	Professional Elective-III (Online Courses)		3	0	0		03	50	50	100	3	
5	OEC	22ANE75x	Open Elective- II (Online Courses)		3	0	0		01	50	50	100	3	
6	PR OJ	22ANEP 76	Major Project Phase-II	TD:, AE PSB:AE	0	0	12		03	100	100	200	6	
Total											300	700	24	

Professional E	Professional Elective Course -III*						
Sl. No.	Course Code	Course Title					
1	22ANE74A	Aircraft Maintenance, Repair and Overhaul					
2	22ANE74B	Wind Tunnel Techniques					
3	22ANE74C	Theory of Vibration					
4	22ANE74D	Civil Aviation Rules and Regulation					
Open Elective	Course-II*						
1	22ANE75A	Drone Technology					
2	22ANE75B	Air Traffic and Weather					
3	22ANE75C	Space Technology					
4	22ANE75D	Aviation and Internet Infrastructure					

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: This letter in the course code indicates common to all the stream

Hor Rajaskeakon Aways Dean Academic

Dean Academic Global Academy of Technology, Rajarajeshwarinagar, Bengal 11-98

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

*NPTEL for Credit transfer: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) taken are as per the recommendation of BOS of respective department. The similarity of the contents as offered by NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need tobe completed before the registration of the elective. Any certificate obtained after the registration of elective would notbe considered. The validity of NPTEL certificate is for two years and it cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The grades will be awarded as equivalent to the grades obtained in the NPTEL course.

				1	eaching H	Iours/Wee	k		Examinat	ion		Credits	
SI. No	C	ourse	Course Title	TD&PSB	Theory Lecture	Tutori al T	Practic /Drawing	Self - Study	Duration in hus	CIE Marks	SEE Mark	Total	
		ouc			L	1	r	3			3		
	PEC		Professional	TD: AE	3	0	0		03	50	50	100	3
1		224NE81v	Elective -IV	PSB:AE									
1		22AI\LOIX	(Online										
			Courses)										
	OEC		Open Elective -	TD: AE	3	0	0		03	50	50	100	3
2		22ANE82x	III (Online	PSB:AE									
			Courses)										
	INT		Internship +	TD: AE	0	0	12		03	100	100	200	10
			Technical	PSB:AE									
3		22ANEI83	Seminar										
5		22111(2105	(Industry/Rese										
			arch) (14 - 20										
	weeks)												
				Tota	l								
										200	200	400	16

SCHEME B VIII SEMESTER

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. K: This letter in the course code indicates common to all the stream of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

*NPTEL for Credit transfer: Students can take 12 weeks NPTEL course as an equivalent to Program elective. The NPTEL courses of duration less than 12 weeks will not be considered for credit transfer. The courses (only technical) NPTEL should not exceed a maximum of 40% of the courses being registered by the student. The NPTEL course need to be completed before the registration of the elective. Any certificate obtained after the registration of elective would not be considered. The NPTEL certificate is valid for two years and cannot be used more than once to avail the benefit. The student is eligible to transfer a maximum of nine credits in the entire duration of the program. The grades will be awarded as equivalent to the grades obtained in the NPTEL course.

Binz

SEMESTER – III SYLLABUS

SEMESTER – III

COURSE: COMPLEX VARIABLES AND PROBABILITY (COMMON FOR ME/AE)

Course Code	22MAT31C	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of mathematics in the field of engineering by making them to learn:

CLO1	Analytic functions and complex line integrals
CLO2	Probability distributions
CLO3	Joint probability distributions
CLO4	Sampling distributions and testing of hypothesis

Content	No.of Hours/ RBT levels
Module 1 Function of complex variables, Analytic functions, Cauchy-Riemann equations, construction of analytic functions using Milne Thomson method, Properties of analytic functions.	08 Hours L2, L3
Module 2 Conformal mapping, Bilinear transformations. Complex line integrals, Cauchy's theorem, Cauchy's integral formula, Singularities, poles, residues, Cauchy's residue theorem.	08 Hours L2, L3
Module 3 Probability, Axioms of probability, Conditional probability, Bayes theorem, Discrete and continuous random variables, Moments, Moment generating functions, Binomial, Uniform, Poisson, Exponential, Normal distributions.	08 Hours L2, L3
Module 4	08 Hours L2, L3

Joint distributions (both discrete and continuous), Marginal and conditional distributions, Expectation and Covariance. Transformation of random variables, Central limit theorem and law of large numbers.	
Module 5 Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, student's t-distribution, chi-square distribution as a test of goodness of fit.	08 Hours L2, L3

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO31.1	Apply Cauchy Riemann equations to study different properties of analytic functions
CO31.2	Evaluate complex line integrals
CO31.3	Solve problems associated with random variables using probability distributions
CO31.4	Solve problems related to testing of hypothesis

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers 44th Edition, 2017
- 2. T Veerarajan, Probability, Statistics and Random Processes for Engineers, Tata McGraw Hill, 3rd Edition, 2008

Reference books:

- 1. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006
- 2. N.P.Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications 6 th Edition, 2014
- 3. Richard H Williams, Probability, Statistics and Random Processes for Engineers, Cengage Learning, 1st Edition, 2003.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. Some possible AATs: seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	50
	CIE Test-3	40	50
	Assignments	10	
SEE	Semester End Examination	50	50
	100		

Table 2: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping																
CO/PO	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	P012	PSO1	PSO2	PSO3	PSO4
CO31.1	3	2	1									3				
CO31.2	3	2	1									3				
CO31.3	3	2	1									3				
CO31.4	3	2	1									3				
Average	3	2	1									3				

Low-1: Medium-2: High-3

SEMESTER – III

COURSE: FLUID MECHANICS

Course Code	22ANE32	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Fluid Mechanics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	The properties of fluids and its Characteristic are studied
CLO2	To understand the importance of dimensional analysis
CLO3	The applications of the conservation laws to flow through pipes are studied
CLO4	To understand the importance of Flow Measuring devices.
CLO5	To understand the importance of Viscous effect.

Content	No. of Hours/ RBT levels
Module 1 Fluids: Introduction, Properties of fluids, Viscosity, Types of fluids, Compressibility and Bulk Modulus. Fluid Statics: Fluid Pressure at a Point, Pascal's law, Pressure variation in a Static fluid, Absolute, Gauge, Atmospheric and Vacuum Pressures. Simple Manometer and Differential Manometer. Total Pressure and center of Pressure on Submerged Plane Surfaces.	08 Hours L3
Module 2 Buoyancy: Buoyancy, Center of Buoyancy, Meta-Centre and Meta-Centric Height, Conditions of Equilibrium of Floating and Submerged Bodies, Determination of Meta-Centric Height. Dimensional Analysis: Introduction, Derived Quantities, Dimensions of Physical Quantities, Dimensional Homogeneity, Rayleigh's Method, Buckingham's II Theorem, Types of Similarities and Dimensionless Numbers.	08 Hours L3
Module 3 Fluid Kinematics: Types of Fluid Flow, Continuity Equation in 2D and 3D Velocity and Acceleration. Velocity Potential Function and Stream Function, Flow net, Fundamentals of flow visualization stream lines, stream tube,	08 Hours L3

timeline, path lines, streak lines, flow visualization techniques. Vortex Flow -	
Free and Forced Vortex	
Module 4 Fluid Dynamics: Introduction Equation of motion Euler's equation of	08 Hours
Motion, Bernoulli's equation from first principles, limitations of Bernoulli's equation.	L3
Fluid Flow Measurements: Venturimeter, Orifice meter, pitot-tube, vertical orifice, V-Notch and Rectangular notches.	
Module 5	
Flow through pipes: Minor Energy losses through pipes. Darcy's and Chezy's	
equation for loss of head due to Friction in pipes.	08 Hours L3
Viscous Flow: Reynolds's number, Critical Reynold's number, Laminar flow,	20
Turbulent flow, Viscous flow through Circular Pipe-Hagen Poiseille's formula,	
Viscous flow between two parallel plates and, Boundary layer concept.	

Laboratory Exercises

LIST OF EXPERIMENTS

- 1. Determine the flow of fluid using Venturimeter and coefficient of discharge of Venturimeter.
- 2. Determine the flow of fluid using Orifice-meter and determine the coefficient of discharge.
- 3. Determine the coefficient of discharge of Notches (V-type and rectangular types)
- 4. Determination of Vane Coefficient for Flat Vane and Semi-circular Vane.
- 5. Determination of Minor Losses in Flow through pipes.
- 6. Determination of Coefficient of Friction of flow in a pipe.
- 7. Experimental Validation of Bernoulli's Equation through Fluid Flow.
- 8. Performance Characteristics of single stage Centrifugal Pump.
- 9. Performance Testing of a Single stage Reciprocating Pumps.
- 10. Performance test of a two stage Reciprocating Air Compressor.
- 11. Performance Characteristics of Kaplan Turbine.
- 12. Performance Characteristics of Francis Turbine.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO32.1	Apply Fundamental knowledge to Predict the Properties and Characteristics of fluid.
CO32.2	Apply principle of dimensional analysis & similitude to simple engineering

30

	problems and describe buoyancy force.
CO32.3	Understand the Kinematics of fluid flow and Continuity Equation.
CO32.4	Analyse the Forces and energy for the fluid flow in a conduit and compare the different flow Measuring devices.
CO32.5	Analyse the losses and viscous effects in the flow through pipes.

Textbooks:

- 1. R K Bansal, "Fluid Mechanics and Hydraulic machines", Lakshmi Publications, revised 9th Edition 2015.
- **2.** Frank M. White "Fluid Mechanics", Seventh Edition, McGraw-Hill Companies, Inc. Publications, New York 2011.

Reference books:

- 1. Graebel W.P, "Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2011
- 2. Kumar K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi 2016

Web references/ links

Mod-01 Lec-01 Introduction and Fundamental Concepts

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **onefull question from each module**.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. The average of the three tests are taken for computation of CIE-on a scale of 30, the CIE would also include laboratory evaluation for 20 marks. The laboratory marks of 20 would comprise of 10 marks for regular laboratory assessment to include lab record and observation. 10 marks would be exclusive for laboratory internal assessment test to be conducted at the end of the semester

	Component	Marks	Total Marks		
	CIE Test-1				

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CIE	CIE Test-2		50
	CIE Test-3	30	
	Laboratory	20	
SEE	Semester End Examination	50	50
Grand Total			100

CO/PO Mapping														
CO/PO	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO32.1	3	3	-	2	-	-	-	-	2	2	-	1	3	-
CO32.2	3	3	-	2	-	-	-	-	2	2	-	1	3	-
CO32.3	3	3	-	2	-	-	-	-	2	2	-	1	3	-
CO32.4	3	3	-	2	-	-	-	-	2	2	-	1	3	-
CO32.5	3	3	-	2	-	-	-	-	2	2	-	1	3	-
Average	3	3	-	2	-	-	-	-	2	2	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER – III

COURSE: SOLID MECHANICS

Course Code	22ANE33	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Solid Mechanics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To understand the concepts of stress, strain.
CLO2	To study the concept of shearing force and bending moment due to external loads.
CLO3	To determine stresses and deformation under bending and shear load.
CLO4	To determine stresses and deformation in circular shafts due to torsion, also to determine
	deflection in beams.
CLO5	To study the stresses and deformations induced in thin and thick shells.

Content	No. of Hours/RBT levels
Module 1	
Stresses and Strains: Introduction to Stress, Types of stress, Strain, Types of Strain, Modulus of Elasticity, True Stress, True Strain, Simple problems,	08 Hours
Stress Strain Diagram of Ductile, Brittle, Visco- Elastic, Linear & Non- linear Elastic materials, Bars with varying sections, Bars of composite sections, Simple problems, Thermal stresses, Simple problems, Elastic constants and its relation, volumetric stains, Simple problems.	L3
Module 2 Compound Stresses: Methods of Determining stresses in oblique sections, Principal planes and stresses, Simple problems, Construction of Mohr's circle, simple problems. Shear Force and Bending Moment Diagram: Introduction to shear force,	08 Hours L3
bending moment, Types of Beams and loads, sign convention for shear force and bending moment, Shear force and bending moment diagram for various beams. Relation between shear force and bending moment.	
Module 3	
Bending Stresses and shear stress in Beams: Introduction, Pure Bending and Simple Bending, Expression of Bending stress, Neutral axis and Moment of resistance, bending stress in symmetrical sections, Section modulus, Section modulus for various shapes of the beam section. Introduction to	08 Hours L3

shear stress, shear stress distribution for different section	
Module 4	
Torsion of Shafts: Introduction to torsion, Derivation of shear stress produced in a circular shaft subjected to Torsion, Expression of Torque in terms of polar moment of Inertia, Power transmitted by shaft, simple problem.	08 Hours L3
Module 5	
Column and struts: Introduction to columns and struts, Failure of a column, Expression of crippling load when (a) both ends are hinged (b) One end of the column is fixed and the other end is free (c) both ends are fixed (d) One end is fixed and the other end is hinged. Simple problems to be solved used Euler's formula and Rankine formula.	08 Hours L3
Thick and Thin cylinders: Thin cylinders subjected to internal pressure. Stresses in a thin cylinder subjected to internal pressure, Expression of circumferential stress and hoop stress, Simple problems Thick Cylinder: Lame's theorem, Stresses in a thick cylinder, Simple problems to be solved.	

LIST OF EXPERIMENTS

- 1. Brinell, Rockwell and Vicker's hardness test on various specimens.
- 2. Izod and Charpy test on various specimens using impact-testing machine.
- 3. Preparation and study of the Micro Structure of pure metals Mild Steel, Low Carbon steel and High Carbon Steel.
- 4. To study the defects of cast and welded components using non-destructive tests:
 - a. Magnetic crack detection.
 - b. Dye penetration testing.
- 5. Tensile test of metallic and non-metallic specimen using Universal Testing Machine.
- 6. Compression test of metallic and non-metallic specimen using Universal Testing Machine.
- 7. Shear and Bending tests of metallic and non-metallic specimen using Universal Testing Machine.
- 8. Torsion test on metallic specimen using torsion testing machine.
- 9. To study the wear characteristics of metals and non-metal materials under different parameters.
- 10. Fatigue Test (demonstration only).

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

CO33.1	Understand and apply the principles of stresses and strains.
CO33.2	Proficient in determining stresses in oblique sections and analyzing principal planes and stresses
CO33.3	Demonstrate a deep understanding of Bending Stresses and Shear Stress in Beams
CO33.4	Evaluate torsional behavior of shaft material and the hardness of the ferrous and non-ferrous materials.
CO33.5	Analyze the behavior of columns and struts, understanding the failure of columns, and calculating the crippling load under various conditions. Also, the stress distribution in thick and thin cylinder.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

Textbooks:

- 1. R K Bansal, Strength of Materials, Laxmi Publication Pvt Ltd., New Delhi, 2004.
- 2. Ramamrutham, Strength of Materials, Vikas Publication, New Delhi, Eighth edition (2014).
- 3. Gere and Timoshenko, Mechanics of materials, CBS Publishers & Distributors, 2nd edition, 2006.

Reference books:

- 1. Egor P. Popov, Engineering Mechanics of Solids, PHI publications 2nd edition.
- 2. R.c Hibbeler, Mechanics of materials, Pearson publications, 9th edition. 2016
- 3. B.C. Punmia, Ashok Kumar Jain & Arun Kumar Jain, Mechanics of Materials, Laxmi publications, New Delhi, 2006

Web references/ links

https://freevideolectures.com/course/96/strength-ofmaterials

Scheme of Examination:

Semester End Examination (SEE):

Binz

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **onefull question from each module**.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. The average of the three tests are taken for computation of CIE-on a scale of 30, the CIE would also include laboratory evaluation for 20 marks. The laboratory marks of 20 would comprise of 10 marks for regular laboratory assessment to include lab record and observation. 10 marks would be exclusive for laboratory internal assessment test to be conducted at the end of the semester

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2		50
	CIE Test-3	30	
	Laboratory	20	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO33.1	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO33.2	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO33.3	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO33.4	3	3	2	2	-	-	-	-	1	-	-	1	3	-
CO33.5	3	3	2	2	-	-	-	-	1	-	-	1	3	-
Average	3	3	2	2	-	-	-	-	1	-	-	1	3	-

Low-1: Medium-2: High-3

Binz

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098
SEMESTER – III

COURSE: AERO THERMODYNAMICS

Course Code	22ANE34	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Learning Objectives: To enable students to apply the knowledge of Aero Thermodynamics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Basic knowledge on the fundamental concepts of thermodynamics
CLO2	The First law of thermodynamics and its application in Various flow systems
CLO3	The second law of thermodynamics applying to systems and the concept of entropy.
CLO4	Basic knowledge on standard air cycles
CLO5	To get exposure on the basic concepts of Heat and Mass transfer.

Content	No. of Hrs
	/RBT
	Levels
Module-1	
Fundamental Concepts	
Continuum and macroscopic approach; Thermodynamic Systems: open, closed	08Hours
and isolated; Thermodynamic properties and equilibrium; State of a system, state	L1, L2
postulate for simple compressible substances, state diagrams, paths and processes	
on state diagrams; zeroth law of thermodynamics; concept of temperature.	
Module-2	10 Hours
First Law of Thermodynamics	L2,L3
Concept of energy and various forms of energy; concepts of heat and work,	
different modes of work; internal energy, enthalpy; specific heats; first law	
applied to elementary processes, closed systems and control volumes, steady flow	
analysis of nozzles, diffusers, throttling devices, mixing, turbines and	
compressors; unsteady flow analysis.	
Module-3	8 Hours
Second Law of Thermodynamics and Entropy	L2,L3
Limitations of the first law of thermodynamics, concepts of heat engines and heat	
pumps/refrigerators, Kelvin-Planck and Clausius statements and their	
equivalence; reversible and irreversible processes. Carnot cycle and Carnot	
theorems; thermodynamic temperature scale; Clausius inequality and concept of	

entropy; the principle of increase of entropy, T-s diagrams; availability and	
irreversibility	
Module-4	8 Hours
Air Standard Cycles	L2,L3
Otto, Diesel, Dual, Ericsson, Atkinson, Stirling and Brayton cycles - air standard	
efficiency - Mean effective Pressure.	
Modulo 5	Q Llours
Widdule-5	o nours
Basics of Heat and Mass Transfer	L2,L3
Basics of Heat and Mass Transfer Modes of heat transfer, Basic laws governing Heat transfer, combined heat	L2,L3
Basics of Heat and Mass Transfer Modes of heat transfer, Basic laws governing Heat transfer, combined heat transfer mechanism. Boundary conditions of 1st, 2nd and 3rd kind. Introduction	L2,L3
Basics of Heat and Mass Transfer Modes of heat transfer, Basic laws governing Heat transfer, combined heat transfer mechanism. Boundary conditions of 1st, 2nd and 3rd kind. Introduction to mass transfer, definition and terms used in mass transfer, Fick's law of	L2,L3

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO34.1	Relate laws of thermodynamics in various engineering problems.
CO34.2	Differentiate thermodynamic work and heat and apply I law of thermodynamics to different process
CO34.3	Choose and analyze the feasibility of design variables using thermodynamics principles.
CO34.4	Utilize the different types of air standard cycles
CO34.5	Select and Calculate heat transfer involving several heat transfer mechanisms.

Textbooks:

- 1. Yunus A. Cengel and Michael A. Boles, "Thermodynamics: An Engineering Approach" 9th ed., McGraw Hill Publishing Company Limited.
- 2. Yunus A Cengel, Heat and Mass Transfer A Practical Approach, 5th ed., McGraw Hill Publishing Company Limited.
- 3. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2013.
- 4. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", Prentice-Hall India, 2005.

Reference books:

- 1. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 2007.
- 3. Merala C, Pother, Craig W, Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGraw-Hill, New Delhi, 2004.
- 4. Ramalingam K.K. "Thermodynamics", Sci-Tech Publications, 2006
- 5. Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.
- 6. Incropera, DeWitt, "Fundamentals of Heat and mass transfer", John Wiley and Sons,

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

6 th Edition, 2005.

7. Hegde, R.K., Heat and Mass Transfer - Basic Approach, Sapna book House, Bangalore

Web references/ Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101/104/101104067/
- 2. https://nptel.ac.in/courses/101/104/101104067/
- 3. <u>https://nptel.ac.in/courses/101/104/101104067/</u>
- 4. https://nptel.ac.in/courses/101/104/101104067/
- 5. https://nptel.ac.in/courses/101/104/101104067/
- 6. <u>https://nptel.ac.in/courses/112201097/</u>

Practical knowledge references

- 1. <u>https://www.youtube.com/watch?v=suuTC9uGLrI</u>
- 2. <u>https://www.youtube.com/watch?v=suuTC9uGLrIhttps://www.youtube.com/watch?v=7bJywbP7Z</u> <u>IU</u>
- 3. <u>https://www.youtube.com/watch?v=7OJGZHrbD8</u>
- 4. <u>https://www.youtube.com/watch?v=7OJG-</u> ZHrbD8https://www.youtube.com/watch?v=7bJywbP7ZIU
- 5. <u>https://www.youtube.com/watch?v=7bJywbP7ZIUhttps://www.youtube.com/watch?v=2vHLJjlinj</u> <u>w</u>
- 6. <u>https://www.youtube.com/watch?v=Juz9pVVsmQQhttps://www.youtube.com/watch?v=Juz9pVVs</u> <u>mQQ</u>
- 7. <u>https://www.youtube.com/watch?v=L1AHGHRvv9s</u>

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern for regular courses is shown in Table 1.

 Table1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total
			Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	CIE Test-3		

	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	100		

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	604	2010	2011	2012	PSO1	PS02
CO34.1	3	2	-	-	-	-	1	-	1	1	-	1	3	-
CO34.2	3	2	-	-	-	-	1	-	1	1	-	1	3	-
CO34.3	3	2	-	-	-	-	1	-	1	1	-	1	2	-
CO34.4	2	2	-	-	-	-	1	-	1	-	-	1	3	-
CO34.5	3	2	-	-	-	-	1	-	1	1	-	1	3	-
Average	3	2	-	-	-	-	1	-	1	1	-	1	3	-

SEMESTER – III

COURSE: AEROSPACE MATERIALS AND DIGITAL MANUFACTURING

Course Code	22ANE35	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Aircraft Materials and Production in the broad domain of Aeronautical Engineering by making them learn:

CLO1	Learn about the basic properties of the materials used in aerospace industries
CLO2	Know about ferrous and non-ferrous materials used in the aerospace industry
CLO3	Understand the significance of composites in the aircraft industry
CLO4	Familiarize with the sheet metal and riveting process
CLO5	To study about the additive manufacturing technology

Content	No. of Hours/RBT
	levels
Module 1	
Mechanical Behavior of Engineering Materials	
Introduction to aerospace materials and their classification, Linear and non-	
linear elastic properties, various material testing machines.	
Non-ferrous materials in aircraft construction	08 Hours/
Aluminum and its alloys: Types and identification. Properties -Castings- Heat	L2
treatment processes - Surface treatments. Magnesium and its alloys: Cast and	
Wrought alloys - Aircraft application, features specification, fabrication	
problems, Special treatments.	
Titanium and its alloys: Applications, machining, forming, welding and heat	
treatment, other alloys used in aircrafts.	
Module 2	
Aircraft Composites	
Polymer composites, metal matrix composites and ceramic composites in	08 Hours/
aerospace industry-Basics, Types, significance, properties, advantages,	L2
disadvantages and application in aero industry. C-C composites, ablative	
materials, Ultra high temperature ceramics. Composite repairing.	

Binz

Module 3 Sheet Metal Processes in Aircraft Industry Sheet metal operations: shearing, punching, super plastic forming; operations in bending like stretch forming spinning drawing. Riveting, types and techniques, equipment, fasteners, integral tanks, Jigs and Fixtures.	08 Hours/ L2
Module 4 Additive Manufacturing Technology Principle, Advantages of additive manufacturing, General limitation of additive manufacturing, development of additive manufacturing technology: Laser Printing Technologies, Programmable Logic Controllers, Materials, Compute Numerically Controlled Machining. Fused deposition Modeling (FDM Principle, details of processes.	10 Hours/ L2
Module 5 Solid Based Additive Manufacturing Systems: Fused deposition Modeling (FDM): Principle, details of processes. Liquid Based Additive Manufacturing Systems: Stereolithographic Apparatus (SLA): Principle.Powder Based Additive Manufacturing Systems SLS process description, Powder fusion mechanisms	08Hours/ L2

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO35.1	Apply knowledge to grasp the fundamental properties of aerospace materials.
CO35.2	Analyze and select appropriate composites for specific aircraft applications
CO35.3	Differentiate and describe the sheet metal and fabrication processes employed in the aircraft industry.
CO35.4	Comprehensively analyze additive manufacturing processes and their applications in aerospace.
CO35.5	Comprehend the additive manufacturing processes

Textbooks:

- 1. Aircraft Material and Processes Titterton G F Lienhard V English Book Store, New Delhi 5th Ed.,1998
- S. Kalpakjian, Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley, 5th Edition, 1991.
- 3. Gibson 1 D. W. Rosen 1 B. Stucker, Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.

Reference books:

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

- 1. Autar Kaw, Mechanics of Composites, CRC Press, II edition, 2006
- O. P. Khanna, M. Lal, "Production technology", Dhanpat Rai Publications, 5th Edition, 1997

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be

proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component							Marks			Total Marks			
CIE Test-1 CIE CIE Test-2									40 40			50		
		CIE T	est-3					40 10						
		Quizz	es /A	ssign	ment									
SEE		Seme	ster E	nd Ex	kamin	ation			50		50	50		
Grand T	otal										100)		-
CO/PO N	Ларр	ing												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	IPO12	PSO1	PSO2
CO35.1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO35.2	3	2	-	-	-	-	-	-	-	-	-	_	2	-
CO35.3	3	2	-	-	-	-	-	-	-	-	-	_	2	-
CO35.4	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO35.5	3	2	-	-	-	-	-	-	-	-	-	-	2	-
Average	3	2	-	-	-	-	-	-	-	-	-	-	2	-

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER – III

COURSE: ABILITY ENHANCEMENT COURSE- ELEMENTS OF AERONAUTICAL ENGINEERING

Course Code	22AEC36	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to Aeronautical Engineering in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Understand the Historical evaluation of Airplanes & different structures & construction
CLO2	Understand the basic properties and principles behind the flight
CLO3	Study the various types of power plants used in aircrafts
CLO4	Study of the aircraft Stability
CLO5	Study the different component systems and functions

Content	No. of Hours/ RBT levels
Module 1	
Introduction to Aircrafts	
History of aviation; Atmosphere and its properties; Classification of aircrafts; Basic components of an aircraft; structural members; aircraft axis system; aircraft motions; control surfaces and high lift devices; conventional design configurations; Helicopters, their parts and functions.	08 Hours L3
Aircraft Structures and Materials	
Introduction; general types of construction; monocoque, semi monocoque and geodesic structures; typical wing and fuselage structure; metallic and non-metallic materials for aircraft application.	

Module 2	
Aerodynamics	
Basic principles of flight – significance of speed of sound; airspeed and groundspeed; Bernoulli's theorem; forces over wing section, aero foil nomenclature, pressure distribution over a wing section. Lift and drag components, lift curve, drag curve, types of drag, factors affecting lift and drag; Centre of pressure and its significance; aerodynamic Centre, aspect ratio, Mach number and supersonic flight.	08 Hours L3
Module 3	
Aircraft Propulsion Aircraft power plants, classification based on power plant and principle of operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets; performance characteristics. Aircraft power plants – basic principles of piston, turboprop and jet engines; Brayton cycle and its application to gas turbine engines; use of propellers and jets for production of thrust; comparative merits and limitations of different types of propulsion engines; principle of thrust augmentation.	08 Hours L3
Module 4	
Aircraft Stability Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral and roll stability; necessary conditions for longitudinal stability; basics of aircraft control systems. Performance of aircraft – power curves, maximum and minimum speeds for horizontal flight at a given altitude; effect of changes in engine power and altitude on performance; correct and incorrect angles of bank; aerobatics.	08 Hours L3
Module 5	
Aircraft Systems Mechanical systems and their components; hydraulic and pneumatic systems; oxygen System; environmental Control System; fuel system. Electrical systems, flight deck and cockpit systems; navigation system, communication system. Flight control system, cockpit instrumentation and displays; communication systems; navigation systems; power generation systems – engine driven alternators, auxiliary power Module, ram air turbine; power conversion, distribution and management.	10 Hours L3

Upon completion of this course, students will be able to:

CO36.1	Learn the history of aircraft & developments over the years, acquire knowledge on Aircraft differentiate types and constructions
CO36.2	Understand the basic concepts of flight & Physical properties of Atmosphere

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CO36.3	Understand the Different types of Engines and principles of Rocket
CO36.4	Understand the Basics of aircraft Stability
CO36.5	Ability to identify the types & classifications of components and control systems

Textbooks:

- 1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition, 2015
- 2. Handbooks of Airframe and Power Plant Mechanics, US dept. of Transportation, Federal, Aviation Administration, the English Book Store, New Delhi, 1995.
- 3. Mekinley, J.L. and R.D. Bent, Aircraft Power Plants, McGraw Hill 1993.
- 4. Pallet, E.H.J. Aircraft Instruments & Principles, Pitman & Co 1993.
- 5. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

Reference books:

- 1. Kermode, A.C. Flight without Formulae, Pearson Education; Eleven edition, 2011
- 2. McKinley, J.L. and Bent R.D. Aircraft Maintenance & Repair, McGraw Hill, 1993.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

SEE

Three Tests are to be conducted for 40 marks each. CIE is executed by way of guizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CIE Test-2

CIE Test-3

Quizzes /Assignment

Semester End Examination

Ring	
Head of the Department	

50

40

10

50

Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

46

Grand Total

100

	CO/PO Mapping													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO36.1	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO36.2	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO36.3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO36.4	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO36.5	3	3	-	-	-	-	-	-	-	-	-	3	3	-
Average	3	3	-	-	-	-	-	-	-	-	-	3	3	-

Low-1: Medium-2: High-3

SEMESTER – III

COURSE: ADDITIONAL MATHEMATICS (FOR LATERAL ENTRY STUDENTS)

Course Code	22MATDIP31	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	00	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Mathematics in various fields of engineering by making them to learn:

CLO1	Derivatives, Polar curves and Radius of curvature
CLO2	Partial Derivatives and Jacobians
CLO3	Multiple integrals, beta & gamma functions
CLO4	Ordinary and Partial differential equations

Content	No. of Hours/ RBT levels
Module 1 Successive differentiation - simple problems. Polar Curves - angle between radius vector and tangent, angle between two curves, Pedal equation. Taylor's and Maclaurin's series for function of one variable.	8 Hours L2, L3
Module 2 Evaluation of Indeterminate forms. Partial derivatives, Differentiation of implicit and composite functions. Jacobians. Taylor's series for functions of two variables.	8 Hours L2, L3
Module 3 Multiple Integrals-Double integrals- direct evaluation, change of order of integration, change of variables. Triple integrals-direct evaluation. Beta and Gamma functions, relation between beta and gamma function.	8 Hours L2, L3
Module 4 Solution of first order and first-degree differential equations – Variable Separable, Exact and Bernoulli's differential equations. Second order linear	8 Hours L2, L3

differential equation with constant Coefficients-Inverse differential operators.	
Cauchy's and Legendre's Linear differential equations.	
Module 5	
Formation of partial differential equations by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration, homogeneous PDEs involving derivative with respect to one independent	8 Hours L2, L3
variable only.	

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO1	Apply the knowledge of differential calculus to solve problems related to curvature, maxima & minima of a function and Jacobians
CO2	Evaluate double and triple integrals
CO3	Evaluate definite integrals using beta and gamma functions
CO4	Solve linear differential equations of first and second order with constant/variable coefficients
CO5	Solve partial differential equations.

Textbooks:

1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers 44th Edition, 2017

2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006

Reference books:

1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons 10th Edition, 2016 2. N.P.Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications 6th Edition, 2014.

Semester End Examination (SEE):

There will be no SEE examination for this course.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks
49		

Heat of the Department

	CIE Test-1	40	
CIE	CIE Test-2	40	50
	CIE Test-3	40	
	Assignments	10	_
	Grand Total (Final CIE x 2)		100

	CO/PO Mapping															
СО/РО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSOI	PSO2	PSO3	PSO4
CO1	3	2	1									2				
CO2	3	2	1									2				
CO3	3	2	1									2				
CO4	3	2	1									2				
CO5	3	2	1									2				
Averag e	3	2	1									2				

Low-1: Medium-2: High-3

SEMESTER - III

VALUE ADDED COURSE

Course: BASIC ELECTRICALS AND ELECTRONICS FOR AERONAUTICS

Course Code	22VAC37	CIE Marks	
Hours/Week (L: T: P)	1:0:0	SEE Marks	
No. of Credits	0	Hours	30

Pre-requisite: -

Course Objectives: To study and understand the BEEA and their industrial applications.

CLO1	Understand the basic concept of electrical, and electronic systems.
CLO2	Explain the concept of digital systems, control, and transducers.
CLO3	Develop the knowledge of generators, motors, and batteries.
CLO4	Understand the concept of power supply and its distribution process.
CLO4	Explain the process of the flight management system.

Content	No. of Hours/ RBT levels
Module 1	
INTRODUCTION TO ELECTRICAL & ELECTRONICS: Electron theory, Electrostatic and capacitors, current, voltage, resistance, Power and energy, Electromagnetism and inductors, Transformers, Semiconductor theory, Diodes, Transistors, ICs.	06 Hours/ L3
Module 2	
DIGITAL FUNDAMENTALS: Logic gates, Monostable devices, Bistable devices, Encoder and Decoder, Multiplexer and Demultiplexer, Bus systems,	06

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CONTROLS & TRANSDUCERS: Switches, Relays and contactors, Variable	Hours/
resistors, and Types of transducers.	L3
Module 3	
GENERATORS, MOTORS & BATTERIES: AC generators, Three-phase	
generation and distribution, AC motors, Storage cells, types of batteries, Battery	
location, venting and connection.	06
	Hours/
	L3
Module 4	
POWER SUPPLY & ITS DISTRIBUTION: Regulators, External power,	06
Inverters, Transformer rectifier units, Transformers, APU, Emergency power,	TT /
Single engine, Twin engine, larger aircraft systems, split bus system, parallel bus	Hours/
system, standby and essential power, load shedding.	L3
Modulo 5	
Would 5	
FLIGHT MANAGEMENT SYSTEM: Engine system, cabin system, Airframe	
control and indicating system, Warning and protection system, TAWS.	06
	Hours/ L3

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

CO1	Understand the basic concept of electrical and electronics and its application in aircraft.
CO2	Adapt the concept of digital systems, control, and transducers.
CO3	Develop the knowledge of generators, motors, and batteries.
CO4	Understand the concept of power supply and its distribution process.
CO4	Understand the process of flight management systems.

Textbooks:

1. "Aircraft Electrical and Electronics System" by Mike Tooley and David Wyatt

2. "Aircraft Electricity and Electronics" by Thomas K. Eismin

Reference books:

1."Starting Electronics" by Keith Brindley.

2. "Standard Handbook for Electrical Engineers" by H. Wayne Beaty and Donal G. Fink

Scheme of Examination: Quizzes /Assignment at the end of the course

CO/PO Mapping														
	Р	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PS	PSO
	0	2	3	4	5	6	7	8	9	10	11	12	01	2
0/10	1													
CO1	3	3	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	3	3	2	-	-	-	-	-	-	-	-	-	-
Average	3	3	3	2	-	-	-	-	-	-	-	-	-	-

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

53

SEMESTER IV SYLLABUS

SEMESTER IV

COURSE: TRANSFORMS CALCULUS AND NUMERICAL TECHNIQUES

Course Code	22MAT41C	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Mathematics in various fields of engineering by making them to learn:

CLO1	Laplace Transforms
CLO2	Fourier series and Fourier Transforms
CLO3	Numerical Methods

Content	No. of Hours/ RBT levels
M- J-1- 1	
Laplace transforms of elementary functions, Unit-step and Dirac delta	08 Hours
functions. Inverse Laplace Transforms, Solution of second order linear differential equations using Laplace transforms.	L2, L3
Module 2	
Fourier series of periodic functions, half range Fourier sine and cosine	08 Hours
series. Infinite Fourier transforms, Fourier sine and cosine transforms.	L2, L3
Inverse Fourier transforms.	
Module 3	
Solution of algebraic and transcendental equations: Regula-Falsi and Newton-Raphson method. Finite differences: Newton's forward and	08 Hours
backward difference formulae. Newton's divided difference formula and	L2, L3
Lagrange's interpolation formula. Numerical integration: Simpson's 1/3rd,	
3/8th, Weddle's rule.	
Module 4	09 11.000
Numerical solution of ordinary differential equations of first order and first	vo nours
degree using Modified Euler method, Runge-Kutta method of fourth order,	L2, L3
Milne's and Adam-Bashforth predictor and corrector methods. Numerical	

solution of second order ordinary differential equations: Runge-Kutta method and Milne's method.	
Module 5	
One dimensional wave and heat equation. Solution of heat and wave equation by method of separation of variables. Two-dimensional heat flow, Solution of Laplace's equation, Laplace's equation in polar coordinates. Two-dimensional wave equation. Numerical solution of heat and wave equations.	08 Hours L2, L3

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO41.1	Determine Laplace and inverse Laplace transforms of given functions and solve linear differential equations
CO41.2	Determine Fourier series and Fourier Transform of given function.
CO41.3	Apply numerical techniques to solve algebraic and transcendental equations.
CO41.4	Apply numerical techniques for interpolation and to evaluate definite integrals.
CO41.5	Solve ordinary differential equations of first and second order using single step and multistep numerical methods
CO41.6	Solve problems related to heat and wave equations

Textbooks:

- 3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers 44th Edition, 2017
- 4. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006

Reference books:

- 4. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons 10th Edition, 2016
- 5. N.P.Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications 6th Edition, 2014

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three

56

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage	for CIE & SEE of Regular courses
------------------------------------	----------------------------------

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	50
CIE	CIE Test-3	40	50
	Assignments	10	
SEE	Semester End Examination	50	50
	Grand Total	100	

	CO/PO Mapping															
CO/PO	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012	DSO	DSO	DSO	PSO
CO41.1	3	2	1									3				
CO41.2	3	2	1									3				
CO41.3	3	2	1									3				
CO41.4	3	2	1									3				
CO41.5	3	2	1									3				
CO41.6	3	2	1									3				
Averag e	3	2	1									3				

Low-1: Medium-2: High-

SEMESTER IV

COURSE: LOW-SPEED AERODYNAMICS

Course Code	22ANE42	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Fluid Mechanics

Course Objectives: To enable students to apply the knowledge of aerodynamics in broaddomain of aeronautical engineering by making them to learn:

CO1	The governing equations of fluid flow for incompressible inviscid flow
CO2	Understand the concept of superposition of elementary flows for inviscid, incompressible flow
CO3	Methods for describing airflow around airfoils and calculating Aerodynamic Coefficients
CO4	Understand the flow behavior over a finite wing and calculating the aerodynamic forces
CO5	Viscous Flow: boundary layer, velocity profile, thickness and friction coefficient.

Content	No. of Hours/ RBT levels
Module 1	
REVIEW OF BASIC DEFINITIONS & EQUATIONS	10 Hours
Importance of Aerodynamics, Fundamental aerodynamics, variables and dimensional analysis leading to Forces & Moments coefficient and dimensionless similarity parameters such as Reynolds number, Mach number, Incompressible flow, Compressible flow and Types of Flows. Models of the Fluid: Control volume, and Fluid Elements. Continuity, Momentum and Energy Equations.	L3
Module 2	10 Hours
INVISID, INCOMPRESSIBLE FLOW	L3
Path lines, Streamlines, Streak lines, Angular Velocity, Vorticity, Stream Function and Velocity Potential function and Circulation. Basic flows – Uniform parallel flow, Source and Sink, Doublet, Vortex Flow and Combinations of basic flows. Non lifting flow and Lifting flow over circular	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

cylinder, Kutta Joukowski's theorem and generation of lift. D' Alembert	
Paradox and Magnus effects.	
Module 3	10 Hours
INCOMPRESSIBLE FLOW OVER AIRFOILS:	L3
Blasius theorem, Kutta condition, Airfoils Nomenclature and NACA series, Airfoil Characteristics, Stall condition and Flow separation. Vortex sheet, Kelvin Circulation theorem and the Starting Vortex. Classical Thin airfoil theory: The Symmetrical airfoil and its applications.	
Module 4	
INCOMPRESSIBLE FLOW OVER FINITE WING:	10 Hours
Introduction to Finite wing, Downwash and Induced Drag, Vortex Filament, the Biot -Savart law and Helmholtz's theorems, Horseshoe vortex, Prandtl's Classical Lifting line theory and its limitations, Elliptical lift distribution.	L3
Module 5	
VISCOUS FLOW : Boundary layer, Laminar & Turbulent layer, Boundary layer Thickness, Displacement Thickness, Momentum Thickness, Energy Thickness, Boundary layer equation for a steady, two-dimensional incompressible flow, Boundary layer growth over a Flat Plate, Blasius Solution.	10 Hours L3

Laboratory Exercises

LIST OF EXPERIMENTS

1	Wind tunnels and its Specifications
2	Calibration of a Low Subsonic Speed Wind Tunnel
3	Smoke flow visualization on a Two-Dimensional Circular Cylinder At various air Speeds
4	Smoke flow visualization studies on a two-dimensional symmetric airfoil at different angle of incidence
5	Smoke flow visualization studies on a two-dimensional cambered airfoil at different angle of incidence
6	Tuft flow visualization studies on a two-dimensional airfoil at different angle of incidence at low speeds

7	Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag
8	Surface pressure distributions on a two-dimensional symmetric airfoil at low speeds and calculation of pressure drag
9	Surface pressure distributions on a two-dimensional cambered airfoil at various angles of attack and calculation of pressure drag
10	Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey
11	Calculation of Total drag of a three-dimensional rough circular cylinder/sphere at low speeds using pitot-static probe wake survey
12	Calculation of Total drag of a two-dimensional symmetrical airfoil at low speeds using pitot-static probe wake survey
13	Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness
14	Calculation of aerodynamic coefficients and forces acting on a model aircraft using 6 -component force balance at various angles of incidence and speed

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO42.1	Apply the Fundamental Conservative Principles of Nature to Obtain the Governing Equations in Fluid Flows.
CO42.2	Calculate the Basic Flow Properties of 2 - D geometries by using Potential flow theory and Superposition Principles.
CO42.3	Determine the Aerodynamic force and Moment coefficients using Thin airfoil theory.
CO42.4	Analyze the Lift and Drag Forces of a Finite wing using Lifting Line Theory.
CO42.5	Understand the Transport Properties of fluid due to Viscosity, Thermal Conductivity and Mass Diffusivity.

Textbooks:

- 1. J. D. Anderson, "Fundamentals of Aerodynamics", 5th Edition, McGraw Hill Education India Private Limited, 2010.
- 2. L J Clancy,"Aerodynamics" Paperback 2006

Reference books:

- 1. E. L. Houghton, "Aerodynamics for Engineering students", 6th edition, Elsevier, 2012.
- 2. Ethirajan Radhakrishnan, "Theoretical Aerodynamics", 1st Edition, Wiley Publications, 2013.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. Marks scored in each test is reduced to 30 and added to test component.

CIE is executed by way of Three tests.

Laboratory CIE is conducted for 20 Marks and Added to CIE component

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	30
	CIE Test-3	40	
	LAB CIE	20	20
SEE	Semester End Examination	50	50
	100		

CO/PO Mapping														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO/PO														
CO1	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO2	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO3	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO4	3	3	2	2	2	-	-	-	-	-	-	1	3	2
Averag e	3	3	2	2	2	-	-	-	-	-	-	1	3	2

Low-1: Medium-2: High-3

SEMESTER – IV

COURSE: AIRCRAFT PROPULSION

Course Code	22ANE43	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Learning Objectives: To enable students to apply the knowledge of Aircraft Propulsion in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Basic knowledge on the classifications of aircraft engines, their operations, fundamental components and their functions in engines.					
CLO2	The functions of inlets and nozzles for subsonic and supersonic flow regimes.					
CLO3	The basic operation of compressors, their types, the design of compressor blades, and their performance characteristics.					
CLO4	The process of combustion, types of combustion chambers, and their respective applications					
CLO5	To understand the turbine, their limitations, design of turbine blades, their performance and cooling methods.					

CONTENT	No. of Hrs /RBT Levels
MODULE-1	
FUNDAMENTALS OF AIR BREATHING ENGINES	
Classification of aircraft power plants, Principles of aircraft propulsion, working of gas	8 Hours
turbine engines, Thermodynamic cycle analysis, thrust equation, Factors affecting thrust,	L1, L2
Methods of thrust augmentation, Performance characteristics of gas turbine engines and	
their comparisons, Numerical Problems	
MODULE-2	
INLETS AND NOZZLES	
Internal flow and Stall in Subsonic inlets, Boundary layer separation, Major features of	
external flow near a subsonic inlet, Diffuser performance. Supersonic inlets: Supersonic	10
inlets, starting problem in supersonic inlets, Shock swallowing by area variation,	Hours
External deceleration, Modes of inlet operation, Numerical Problems	L2. L3
Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles, Convergent	, -
Divergent nozzle, nozzle choking, Nozzle throat conditions, Nozzle efficiency, Losses	
in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area	
nozzles, thrust reversal, Thrust Vectoring, Numerical Problems	
MODULE-3	
COMPRESSORS	
Centrifugal compressors: Operation of centrifugal compressors, Work done and pressure	8 Hours
rise, Velocity diagrams, Diffuser vane design considerations, performance	L2, L3
characteristics. Axial flow compressors: Elementary theory of axial flow compressor,	,
Velocity triangles, Degree of reaction, Compressor blade design, Axial compressor	
performance characteristics, Numerical Problems	
MODULE-4	
COMBUSTION CHAMBERS	
Classification of combustion chambers, Combustion process, Important factors affecting	8 Hours
combustion chamber design, Combustion chamber performance, Effect of operating	L2, L3
variables on performance – Flame tube cooling – Flame stabilization – Use of flame	
holders	
MODULE-5	
TUKBINES	
Turbine stage, multi-staging of turbine, Principle of operation of axial flow turbines,	8 Hours
work done and pressure rise, velocity diagrams, Degree of reaction, Stage efficiency	L2, L3
calculations, Basic blade profile design considerations, Turbine blade cooling methods,	
Matching of compressor and turbine, Numerical Problems	

CO1	Explicate the principles of operation of aircraft propulsion and the fundamental components and their functions in engines.
CO2	Realize the functions of the aircraft inlet and nozzle, their advantages and limitations.
CO3	Assess the compressor's efficiency based on the blade design and the pressure requirements.
CO4	Examine the processes of combustion and combustor and choose the suitable chamber based on their applications.
CO5	Design the turbine stage and turbine blade angles based on the requirements of the compressor.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

Textbooks:

1. P.G. Hill and C.R. Peterson, "Mechanics & Thermodynamics of Propulsion", Addison

Wesley Longman INC, 2015.

- 2. M. L. Mathur and R. P. Sharma, "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014
- 3. Ahmed F. EL-Sayed, "Aircraft Propulsion and Gas turbine engines", CRC press, 2017.

Reference books:

- 1. Cohen, H. Rogers, G.F.C. and Saravana muttoo, H.I.H. "Gas Turbine Theory", Longman, 1989.
- 2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985.
- 3. Rathakrishnan., E, "Gas Dynamics", Fifth edition Published by PHI Learning, 2014.

Web references/ Additional online information (related to module if any):

- 7. https://onlinecourses.nptel.ac.in/noc22_me125/preview
- 8. https://archive.nptel.ac.in/courses/101/101/101101002/

Practical knowledge references

- 1. <u>https://www.linkedin.com/posts/thuwin_aerospace-engineering-job-activity-7081738421739614208-q2me</u>
- 2. <u>https://www.infosys.com/services/engineering-services/service-offerings/turbomachinery-propulsion.html</u>

3. <u>https://www.youtube.com/watch?v=PcPBYh6Cfao</u>

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1	10	
CIE	CIE Test-2	40	50
CIE	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	Grand Total	I	100

COURSE OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	1	-	1	3	-
CO2	3	2	2	-	-	-	-	-	-	1	-	1	3	-
CO3	3	2	2	-	-	-	-	-	-	1	-	1	2	-
CO4	2	2	2	-	-	-	-	-	-	1	-	1	3	-
CO5	3	2	2	-	-	-	-	-	-	1	-	1	3	-
Average	3	2	2	-	-	-	-	-	-	1	-	1	3	-

Low-1: Medium-2: High-3

Biz

SEMESTER – IV

COURSE: AIRCRAFT STRUCTURES-I

Course Code	22ANE44	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Aircraft Structures-I in broad domain of Aeronautical Engineering by making them to learn:

CO1	Understand the types of loads experienced by aircraft structure and materials used for aircraft structures
CO2	Acquire knowledge on different methodologies to analyze statically determinate and indeterminate structures under various loading conditions
CO3	Apply the energy method concept to determine the strain energy using various methods
CO4	Discuss about the theory of failure for aircraft structures
CO5	Solve aircraft structural problems by applying the concepts of theory of elasticity

Content	No. of Hours/ RBT levels
Module 1	
Introduction to Aircraft Structures: Structural layout of the Airplane and components, loads acting on major components such as wing, fuselage, tails, landing gear etc. V-n diagram, Concept of allowable stress and margin of safety. Types of loads – load factor – Aerodynamics loads –Symmetric manoeuvre loads –Aircraft Materials.	08 Hours L3
Module 2	
Statically Determinate & Indeterminate Structures : Plane truss analysis – method of joints – method of sections – method of shear – 3-D trusses – principle of super position, Clapeyron's 3 moment equation and moment distribution method for indeterminate beams	08 Hours L3
Module 3	
Energy Methods: Strain Energy in axial, bending, torsion and shear loadings. Castigliano's theorems and their applications. Energy theorems – dummy load & unit load methods – energy methods applied to statically determinate and	08 Hours

indeterminate beams, frames, rings & trusses.	L3
Module 4	
Failure Theories: Ductile and brittle materials – maximum principal stress	
theory - maximum principal strain theory - maximum shear stress theory - distortion energy theory – octahedral shear stress theory	08 Hours
	L3
Module 5	
Theory Of Elasticity: Concept of stress and strain, derivation of Equilibrium	08 Hours
conditions, strain displacement relation, compatibility conditions and boundary conditions. Plane stress and Plane strain problems in 2D elasticity.stuructural health monitoring of aircraft.	L3

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO44.1	comprehensive understanding of aircraft structures, encompassing topics such as structural layout, major components, loads
CO44.2	Proficiently apply different methodologies to analyze statically determinate and indeterminate structures under various loading conditions
CO44.3	Apply strain energy principles in diverse loadings and effectively utilize Castigliano's theorems and its applications
CO44.4	Apply advanced material theories for optimal material selection and structural design under varying loading conditions.
CO44.5	Solve aircraft structural problems by applying the concepts of theory of elasticity.

Textbooks:

- **1.** 'Mechanics of Materials' by James M. Gere & Barry J Goodno, cengage Learning Custom Publishing; 8th edition, 2012.
- **2.** Megson T M G, 'Aircraft Structures for Engineering students' Butterworth-Heinemann publisher, 5th edition, 2012.
- **3.** N.C. Pandya, C.S. Shah, "Elements of Machine Design", Charotar Publishing House, 15th edition, 2009.

Reference books:

1. Bruhn E F, 'Analysis and Design of Flight Vehicle Structures', Tri-State Off-set

Company, USA, 1985

- 2. Donaldson, B.K., 'Analysis of Aircraft Structures An Introduction' Cambridge University Press publishers, 2nd edition , 2008
- 3. Peery, D.J., and Azar, J.J., Aircraft Structures, 2nd edition, McGraw Hill, N.Y., 1999

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **onefull question from each module**.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	PO1	P02	P03	P04	PO5	P06	PO7	PO8	P09	P010	P011	P012	PSO1	PSO2
CO44.1	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO44.2	3	3	1	-	-	-	-	-	-	-	-	-	3	-

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CO44.3	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO44.4	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO44.5	3	3	1	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	1	-	-	-	-	-	-	-	-	-	3	-

Low-1: Medium-2: High-3

SEMESTER – IV

COURSE: ADVANCED DRONE TECHNOLOGY

Course Code	22ANE45	CIE Marks	50
Hours/Week (L: T: P)	3:0:1	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to understand the drone and its functioning

CLO1	Understanding Drone Aerodynamics to make a model glider.
CLO2	Arrange together and using remote control parts for drones.
CLO3	Learn how to check and fix drones to make sure they work right.
CLO4	Build and program drones while following the rules for flying them

Content	No. of
	Hours /
	RBT levels
Module 1	
Drone Aerodynamics	
Drone Basics & Applications, Drone Forces & Axis - Multirotor & Fixed Wing,	8 Hours
Static, Dynamic Stability, Drag Types, Lift Generation, NACA, Wing & Tail	1314
Configuration,	13, 14
Winglets, Aspect Ratio, CG/AD Points, Load Factor, Controls, Gliding.	
Design & Fabrication of Own Model Glider, Wing & Tail design, Testing	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

69

Module 2		
RC Avionics introduction & assembling: RC Avionics, Fixed wing/Multi rotor Avionic Components Demonstration; BLDC Motor -Stator/Rotor, Permanent /Electro Magnet, KV & Series; ESC/BEC, Power Module, PWD, Gyro, Servo Motors, Flight Controller, GPS, Telemetry System, GCS; Transmitter & Receiver - Control	10 Hours L3, L4	
Module 3		
Drone Testing: Practical Testing - Thrust Checking, CG Balancing, Roll Balancing, Propeller Balancing, Weight Estimation, Laser Vibration Checking, Speed/Velocity Checking, Servo Motor Controls Testing & Trimming, Lipo Testing & Balancing.	10 Hours L3, L4	
Module 4		
Drone Assembling & Programming: Drone Frame Configurations, Frame Materials, Drone Assembling, Flight Controller Programming (KK 2.1) - Calibration, PI Gain, Receiver Test, Self-Level Testing, Gyro, resetting; Autonomous Systems, Drone Intelligent Modes, DGCA Rules & Regulations; DGCA Norms - UIN, Type Certificate, RPTO, Zones	10 Hours L3, L4	
Module 5		
FPV Systems & Drone Sensors: FPV Camera System, FPV Transmitter & Receiver, FPV goggles, Gimbal Control System, Drone Image Data Processing, GIS, RGB/Photogrammetry Camera for Mapping, Drone Application Sensors, Demonstration & Assembling - Camera Systems, Advanced Drones Image Processing.	8 Hours L1, L2	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO1	Construct a working model glider by applying your understanding of how drones fly. (L3)
CO2	Demonstrate proficiency in configuring and operating remote control parts for drones. (L2)
CO3	Experiment with drones to ensure safe and effective operation. (L3)
CO4	Apply programming skills to drones and comply with regulations for their operation. (L3)
CO5	Comprehend the fundamentals of FPV systems and camera utilization for data capture. (L2)

Textbooks:

- 1. The Drone Rules, 2021. The Gazette of India: Extraordinary [Part II—Sec. 3(i)].
- 2. John Baichtal "Building Your Own Drones" A Beginner's Guide to Drones, UAVs, and ROVs Que Publishing, ISBN 9780789755988
- 3. Julio Alberto Mendoza "Drones to Go" A Crash Course for Scientists and Makers, Apress ISBN-978-1-4842-6787-5
- 4. "Aerodynamics for Naval Aviators" by H. H. Hurt Jr. Reprint edition, 1979, U.S. Navy
- 5. "Introduction to Flight" by John D. Anderson Jr. 8th edition, 2018, McGraw-Hill Education
- 6. "Radio Control for Model Aircraft" by David Boddington (3rd edition, 2014, Special Interest Model Books
- 7. "Drone Maintenance and Repair" by Col. Patrick Sherman (1st edition, 2017, CreateSpace Independent Publishing Platform
- 8. "Quadcopters and Drones: A Beginner's Guide to Successfully Flying and Choosing the Right Drone" by Mark D. Thompson, 1st edition, 2015, CreateSpace Independent Publishing Platform
- 9. "FPV Drone Racing Guide" by Christian Mollica, 1st edition, 2016, CreateSpace Independent Publishing Platform.

Reference books:

- 1. Paul Gerin Fahlstrom, Thomas James Gleason, Introduction to UAV Systems, Wiley Publication John Wiley & Sons, Ltd, 4th Edition 2012.
- 2. Landen Rosen, Unmanned Aerial Vehicle, Alpha Editions, N.Y., 2012
- 3. Valavanis, Kimon P, Unmanned Aerial Vehicles, Springer, 2011.
- 4. Valavanis, K., Vachtsevanos, George J, Unmanned Aerial Vehicles, Springer, 2015.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

71

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	1	-	1	1	1	1	-	1	1	1
CO2	3	3	1	-	1	-	-	-	1	1	-	1	1	1
CO3	3	3	1	-	1	-	1	-	1	1	-	1	1	1
CO4	3	3	1	-	1	-	1	-	1	1	-	1	1	1
CO4	3	3	1	-	1	-	1	-	1	1	-	1	1	1
Average	3	3	1		1		1	1	1	1		1	1	1

Low-1: Medium-2: High-3
SEMESTER – IV

COURSE: COMPUTER-AIDED AIRCRAFT DRAWING

Course Code	22ANE46	CIE Marks	50
Hours/Week (L: T: P)	2:0:2	SEE Marks	50
No. of Credits	2	Examination Hours	03

Prerequisites: Computer Aided Engineering Drawing.

Course Objectives: To enable students to apply the knowledge of Computer Aided Aircraft Drawing in broad domain of Aeronautical engineering by making them to learn:

CL01	To familiarize the students with Indian Standards on drawing practices and s components.	standard
CLO2	To make the students to understand and interpret riveted joints.	
CLO3	To produce different views using orthographic projections using standar packages.	d CAD
CLO4	To gain practical experience in modelling in 3D and to assemble parts using standa packages.	urd CAD
CLO5	Convert 3D Assembly into 2D drafting and generate Bill of material assembled drawing. Create exploded views using standard CAD packages.	als for
	~	

Content	CO/ RBT Levels			
Module-1				
GEOMETRICAL DIMENSIONING & TOLERANCES, THREAD FORMS AND FASTENERS: Types of GD&T, Datum, scope of GD&T standards, Machine tool tests to check for Straightness, Flatness, Parallelism, Squareness, Roundness, Cylindricity, Runout, Limits, Fits and Tolerances, Principle of interchangeability and selective assembly, Hole base system & shaft base system.	10 Hours L2			
 Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External), Square and Acme, Sellers thread, American Standard thread. Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. 				
Module-2	10 Hours			
RIVETED JOINTS: Single and double riveted lap joints, butt joints with single /double cover straps (Chain and Zigzag, using snap head rivets).	L3			
Module-3				

73

ORTHOGRAPHIC VIEWS: Introduction to orthographic projection,	10 Hours
Conversion of pictorial views into orthographic projections of simple machine	L3
parts with or without section. Principle of visualization of objects, sectional views,	
full and half-sectional views.	
Module-4	
3D SKETCHING & PART MODELLING: Conversion of 2D Aeronautical components to 3D parts and sectional views of simple Aeronautical components and Assign material properties and textures to parts: (Detailed 2D part drawings will be given).	10 Hours
1. Propeller and hub parts.	L3
2. Wing parts.	
3. Fuselage parts.	
4. Engine mount parts.	
5. Helicopter rotor blade parts.	
6. Landing gear parts.	
Module-5	
ASSEMBLY AND DRAFTING: Introduction to assembly drawing:	
1. Propeller and hub assembly.	
2. Wing assembly.	10 Hours
3. Fuselage assembly.	L3
4. Engine mount assembly.	
5. Helicopter rotor blade assembly.	
6. Landing gear assembly. Exploding an assembly	
Drafting: Creating detailed drawings and conversion of different views of above mentioned assemblies to 2D drafting. Dimensions, Annotations and Parts Lists. Detailing a drawing, Bill of Materials.	

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO46.1	Implement the drawing standards, Fits and Tolerances, knowledge of Thread forms and fasteners.
CO46.2	Interpret types of riveted joints using in Aviation component manufacturing.
CO46.3	Sketch the orthographic views of machine components from isometric view.
CO46.4	Develop 3D model of Aircraft parts of assembly by reading the blueprint of each part.

CO46.5	Re-create part drawings, sectional views and assembly drawings as per standards, Bill of
	Materials and of components using CAD software.

Textbooks:

- 1. K R Gopalakrishna, Machine Drawing in First angle of Projection, Subhas Publications, 23, 2017.
- 2. N. D. Bhatt, Machine Drawing, Charotar Publication, 50th Edition 2016.

Reference books:

1. KL Narayana, P Kannaiah, K V Reddy, Machine Drawing, New Age International Publishers, 6th Edition, 2019.

2. Sidheshwar, Machine Drawing, Tata McGraw-Hill Education, 33 reprint 2006.

3. R. K. Dhawan, Machine Drawing, S Chand Publishing reprint, 2006.

E-Books / Web References

1. Solid Edge 2022 Part Design Tutorial for Beginner [COMPLETE].

https://www.youtube.com/watch?v=pgSHJmObd00

- 2. Solid Edge fundamentals <u>https://support.industrysoftware.automation.siemens.com/training/se/en/ST4/pdf/mt0141</u> <u>3-s-1040_en.pdf</u>.
- 3. Assembly : <u>https://support.industrysoftware.automation.siemens.com/training/se/en/ST4/pdf/spse016</u> <u>60-s-1040_en.pdf</u>
- 4. Explode Animate application : https://d2t1xqejof9utc.cloudfront.net/files/17325/SolidEdge_ERA_2.pdf?1357790407
- 5. Computer Mouse (Solid Edge Tutorial): https://www.youtube.com/watch?v=0SuN3pVSE_8

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

75

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	Sketch Book	10	
SEE	Semester End Examination	50	50
Grand To	tal		100

	CO/PO Mapping													
СО/РО	POI	PO2	P03	P04	PO5	PO6	PO7	P08	P09	P010	P011	P012	PS01	PSO2
CO46.1	3	3	2	-	3	-	-	1	-	-	-	2	-	3
CO46.2	3	3	2	-	3	-	-	1	-	-	-	2	-	3
CO46.3	3	3	2	-	3	-	-	1	-	-	-	2	-	3
CO46.4	3	3	2	-	3	-	-	1	-	-	-	2	-	3
CO46.5	3	3	2	-	3	-	-	1	-	-	-	2	-	3
Average	3	3	2	-	3	-	-	1	-	-	-	2	-	3

Low-1: Medium-2: High-3

SYSTEMS ENGINEERING										
Cou	Durse Code:22VAC47CIE:100 Marks									
Cree	lits: L:T:P	:	2:0:0	SEE	100 Marks					
Nun cred	ıber of its	:	1	SEE Duration	:	3.00 Hours				
Cou	rse Learning	g O	bjectives:							
1.	Understand	the	Life Cycle of System	s.						
2.	Explain the	rol	e of Stake holders and	their needs in organiz	ationa	al systems.				
3.	3. Develop and Document the knowledge base for effective systems engineering processes.									
4.	4. Apply available tools, methods and technologies to support complex high technology systems.									
5.	Create the frameworks for quality processes to ensure high reliability of systems.									

SEMESTER – IV Course: SYSTEM ENGINEERING FOR AERONAUTICAL ENGINEERS

			UNIT-I			06 Hrs	
							-

System Engineering and the World of Systems: What is System Engineering? Origins of System Engineering, Examples of Systems Requiring Systems Engineering, System Engineering viewpoint, Systems Engineering as a Profession, The power of Systems Engineering, problems.

Structure of Complex Systems: System building blocks and interfaces, Hierarchy of Complex systems, System building blocks, The system environment, Interfaces and Interactions.

The System Development Process: Systems Engineering through the system Life Cycle, Evolutionary Characteristics of the development process, The system engineering method, Testing throughout system development, problems. Introduction to V Model, Model Based Systems Engineering.

77

UNIT – II	10 Hrs

Systems Engineering Management: Managing systems development and risks, Work breakdown structure (WBS), System Engineering Management Plan (SEMP), Risk Management, Organization of Systems Engineering, Systems Engineering Capability Maturity Assessment, Systems Engineering standards, Problem. Originating a new system, Functional analysis, Feasibility analysis, Feasibility definition, Needs validation, System operational requirements, and problems.

Concept Exploration: Developing the system requirements, Operational requirements analysis,

Performance requirements formulation, Implementation concept exploration, Design of Experiments, Modeling & Simulation, Performance requirements validation, and problems.

UNIT – III	10 Hrs

Concept Definition: Selecting the system concept, Performance requirements analysis, Functional analysis and formulation, Concept selection, Concept validation, System Development planning, System Functional Specifications, problems

Advanced Development: Reducing program risks, functional Safety risks, Requirements analysis, Functional Analysis and Design, Prototype development, Development testing, Risk reduction, Introduction to Safety Critical System Design – SAE ARP 4754, RTCA DO-178 Standards. problems.

UNIT – IV

07 Hrs

Engineering Design : Implementing the System Building blocks, requirements analysis, Requirement flow at subsystem and component level, Functional breakdown, Detailed design - Functional analysis and design, Component design, Design validation, Configuration Management, problems.

System Integration and Evaluation: Integrating, Testing and evaluating the total system, Test planning and preparation, System integration, Developmental system testing, and problems.

UNIT – V	06 Hrs
Production: Introduction to DFX (DFM, DFR, DFC, DFT etc), Systems Engin	neering in
the factory, Engineering for production, Transition from development to pro-	duction,
Production operations, Acquiring a production knowledge base, problems.	

78

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand the Life Cycle of Systems.
CO2	Explain the role of Stake holders and their needs in organizational systems.
CO3	Develop and Document the knowledge base for effective systems engineering processes.
CO4	Apply available tools, methods and technologies to support complex high technology systems.
CO5	Create the frameworks for quality processes to ensure high reliability of systems.

Ref	Serence Books:
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N Sweet, 2012,
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B. Rouse, 1999,
	John Wiley & Sons, Inc., ISBN 0-471-15405-9
3.	General System Theory: Foundation, Development, Applications, Ludwig von Bertalanffy, 1973,
	Penguin University Books, ISBN: 0140600043, 9780140600049.
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition, 2010, Prentice
	Hall, Saddle River, NJ, USA

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO mapping											
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
0										0	1	2
C01	1	-	-	-	-	1	-	-	-	-	-	1
CO2	-	2	3	-	1	-	-	1	-	-	2	-
CO3	-	3	-	-	-	2	2	1	-	3	2	-
CO4	-	-	2	1	-	-	-	-	-	-	-	-
CO5	1	1	-	2	-	1	2	-	3	-	-	-

High-3: Medium-2: Low-1

V SEMESTER SYLLABUS

SEMESTER –V

COURSE: AVIATION MANAGEMENT & ECONOMICS

Course Code		22ANE51	CIE Marks	50				
Hours/V	Week (L: T: P)	3:0:0	SEE Marks	50				
No. of Credits		3	Examination Hours	03				
Course	objectives: Intro	oduction to the	Aviation Industry and Glob	al Aviation Economics				
CLO1	Understand t	he history and s	tructure of the aviation ind	ustry.				
CLO2	Explore the economic significance of air transport both Globally and within India.							
CLO3	Understand A	irport Operatio	ons, Infrastructure Planning	g, and Development.				
CLO4	Acquire the general aviation management practices							
CLO5	Grasp the broad disciplines of management at different levels of Aviation Industry							

Content	No. of Hours RBT levels
Module 1 Introduction to the Aviation Industry and Global Aviation Economics: History	08 Hours
and Evolution of the Aviation Industry, Overview of Global Aviation Economics, Indian Aviation Industry Structure, Impact of Aviation on India's Economy, Aviation and Tourism in India, Regional Connectivity UDAN	L1,L2
Module 2 Airline Operations, Fleet Management, and Strategic Planning: Airline Operations, Fleet Management, Airline Network Planning, Strategic Planning in Airlines: Cost control strategies, Competitive positioning: Low-cost carriers (LCCs) vs. full-service airlines, Impact of government policies and regulations on airline strategy.	08Hours/ L2,L3
Module 3 Airport Management and Infrastructure Development in India: Airport Operations and Management, Airport Infrastructure and Development in India, Regulatory and Policy Framework: Role of the Airports Authority of India (AAI). Foreign Direct Investment (FDI) in Indian Airports Economic Impacts of Airports: Airport revenue models: Aeronautical and non-aeronautical revenues.	08Hours/ L3

Module 4					
Aviation Safety, Regulations, and Environmental Economics: Role of					
Directorate General of Civil Aviation (DGCA) in India, International aviation					
regulations (ICAO, IATA) and their impact on Indian aviation, Safety management	08Hours/				
systems and accident investigation, Environmental impacts: Noise pollution, air	L3				
quality, carbon emissions, Sustainable aviation practices and green technologies,					
India's National Civil Aviation Policy (NCAP)					
Module 5	08Hours/				
Financial Management and Marketing in Aviation: Financial Management in	L3				
Aviation, Revenue Management and Pricing Strategies: Airline branding and					
customer loyalty programs. Marketing in Aviation, Economic Analysis of Aviation					
Marketing. Impact of government regulations and taxes on airline profitability.					

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO51.1	Analyse customer need and perceptions of design feedback systems
CO51.2	Infer the customer perception of quality
CO51.3	Apply the foundational knowledge of airline and airport operation, scheduling and management
CO51.4	Implement the general aviation management practices
CO51.5	Prepare for the management at different levels of aviation industry

Textbooks:

- 1. "Managing Airports: An International Perspective" 6th Edition by Anne Graham, Publisher - Taylor & Francis Ltd; 6th edition
- 2. DGCA Guidelines and Policy Documents (Available on the official DGCA website)
- 3. "Airline Operations and Management" A Management Textbook by Gerald N. Cook and Bruce G. Billig, Published by Routledge; 2nd edition
- 1. Aviation Industry: Strategic Management & Development" by P.K. Jain and R.S. Gupta (Indian perspective).

Reference books:

- 1. Aviation Economics and Policy" by D. L. LeCompte and John H. Leow.
- 2. Aviation Industry: Strategic Management & Development" by P.K. Jain and R.S. Gupta (Indian perspective).

Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=6Uk8F3_9ywY

83

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Tota	al		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	604	P010	P011	P012	PSO1	PSO2
CO51.1	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO51.2	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO51.3	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO51.4	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO51.5	3	3	2	2	1	-	-	-	1	1	1	-	1	1
Average	3	3	2	2	1	-	-	-	1	1	1	-	1	1

Low-1: Medium-2: High-3

SEMESTER -V

COURSE: HIGH-SPEED AERODYNAMICS

Course Code	22ANE52	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Prerequisite: Aerodynamics I

Course Learning Objectives: To enable students to apply the knowledge of Aerodynamics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To Introduce the Concepts of compressibility
CLO2	To make the student understand the theory behind the formation of Shocks and
	Expansion waves in supersonic flows.
CLO3	To know the calculations of flow properties across oblique shock wave
CLO4	To linearization of governing equations using small perturbation theory
CLO5	To understand the transonic flow over wing bodies

Content	No. of Hours/ RBT levels
Module 1 ONE DIMENSIONAL COMPRESSIBLE FLOW: Review of Thermodynamics and State Equations, Compressibility, Velocity of Sound, Adiabatic Steady-State flow Equations, Flow-through Convergent- Divergent Passage.	8 Hours/ L3
Module 2 NORMAL SHOCK WAVES: Alternative form of the One-dimensional Energy Equation, Prandtl Meyer Equation and Rankine – Huguenot Relation, Normal Shock Equations, Velocity measurements in Subsonic and Supersonic flows, Pitot Static Tube, Rayleigh and Fanno Flow.	8 Hours/ L3

Module 3 OBLIQUE SHOCK WAVE & EXPANSION WAVES: Oblique Shocks and Corresponding Equations, Flow past wedges and concave corners, Flow past Convex corners, Strong & weak Shocks, Attached & Detached Shocks. Reflection, and Interaction of Shocks, Expansion waves.	8 Hours/ L3
Module 4 LINEARIZED FLOW: Velocity Potential equation, Small Perturbation Potential Theory, Linearized Subsonic and Supersonic Pressure Co-efficient, Mach waves and Mach angles, Prandtl - Glauert compressibility Correction.	8 Hours/ L3
Module 5 TRANSONIC FLOW OVER WING: Lower and upper Critical Mach numbers, Lift and Drag Divergence Mach number, Shock induced separation, Characteristics of Swept wings, Transonic Area rule. Introduction to Hypersonic Aerodynamics.	8 Hours/ L3

List of Experiments

1	Calibration of Supersonic Wind Tunnel at different Mach Number.
2	Shock Wave analysis on Aero Spike Model at M=2
3	Shock Wave analysis on Aero Spike Model at M=3
4	Oblique Shock Wave analysis on a 2D Wedge.
5	Supersonic Flow analysis over a 3D Cone structure.
6	Bow Shock Wave analysis over a Hemispherical Model.
7	Expansion wave analysis over a Double wedge.
8	Shock wave analysis over a Double wedge.
9	Flow Visualization of Under Expanded Nozzle.
10	Schlieren image Visualization of Over Expanded Nozzle.
11	Stagnation Pressure Measurement for Optimized Nozzle.
12	Study of Shock Wave Boundary Layer Interaction.

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

86

CO52.1	Calculate the Thermodynamic state variables in Compressible Flow.
CO52.2	Estimate the flow Properties across Normal Shock Waves.
CO52.3	Evaluate and analyze the flow Properties across Oblique Shock Waves
CO52.4	Understand the Linearization of the governing equations in compressible flow.
CO52.5	Predict the flow Properties of Transonic and Hypersonic flows.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

Textbooks:

- 1. J. D. Anderson, "**Modern Compressible Flow**", 3rd Edition, McGraw Hill Education 16 August 2002.
- 2. Rathakrishnan, E., "Gas Dynamics", 6th Edition, Prentice Hall of India, 2017.

Reference books:

- 1. J. D. Anderson, "Fundamentals of Aerodynamics", 5th Edition, McGraw Hill Education India Private Limited, 2010.
- 2. V. Babu, "Fundamentals of Gas Dynamics", 2nd Edition, John Wiley & Sons Ltd, (2015)
- 3. Shapiro, A.H., "Dynamics and Thermodynamics of Compressible Fluid Flow", Ronald Press, 1982.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 40 marks each. Marks scored in each test are reduced to 30 and added to test component. CIE is executed by way of Three tests. Laboratory CIE is conducted for 20 Marks and Added to CIE component

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	30
	CIE Test-3	40	
	LAB CIE	20	20
SEE	Semester End Examination	50	50
	Grand Total		100

 Table 1: Distribution of weightage for CIE & SEE of Regular courses

						CO/P	O Ma	pping	5					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO52.1	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO52.2	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO52.3	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO52.4	3	3	2	2	2	-	-	-	-	-	-	1	3	2
CO52.5	3	3	2	2	2	-	-	-	-	-	-	1	3	2
Average	3	3	2	2	2	-	-	-	-	-	-	1	3	2

Low-1: Medium-2: High-3

SEMESTER V

COURSE: AIRCRAFT STRUCTURES -II

Course Code	22ANE53	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Aircraft structural mechanics

Course Learning Objectives: To enable students to apply the knowledge of Aircraft Structural Analysis in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Assess the Bending stresses in thin-walled beams
CLO2	Analyze the Shear Flow in open and closed beams
CLO3	Evaluate the forces on Joints and fittings
CLO4	Apply the Structural Idealization to various structural components of an aircraft
CLO5	Analyze the stresses in wings and fuselage structures

Content	No. of
	Hours/RBT
	levels
Module 1	
BENDING OF OPEN AND CLOSED THIN-WALLED BEAMS:	
Symmetrical bending, unsymmetrical bending, direct stress distribution due to	08Hours/
bending, position of the neutral axis, load intensity, shear force, and bending	L3
moment relationships, calculation of section properties, approximation for thin	
walled sections.	
Module 2	
SHEAR FLOW IN OPEN SECTIONS: Thin-walled beams, Concept of she	8
flow, shear centre, Elastic axis. With one axis of symmetry, with wall effective	08 Hours/
and ineffective in bending, unsymmetrical beam sections.	L3
SHEAR FLOW IN CLOSED SECTIONS: Bredt – Batho formula, Single ar	
multi - cell structures, approximate methods. Shear flow in single and multi-ce	
under bending -with walls effective and ineffective.	

89

Module 3	
JOINTS AND FITTINGS: Bolted or riveted joints, accuracy of fitting	
analysis, eccentrically loaded connections, welded joints, and concept of	08 Hours/
effective width.	L3
Module 4	
STRUCTURAL IDEALIZATION: Structural idealization Principle,	
Idealization of a panel, effect of idealization on the analysis of open and closed	
section beams. Bending of open and closed section idealized beams, shear of	LJ
open section and closed section idealized beams.	
Module 5	
STRESS ANALYSIS IN WING SPARS AND BOX BEAMS: Tapered wing	00 Houng /
spar, open and closed section beams, beams having variable stringer areas,	
three- boom shell, tapered wings, cut-outs in wings.	LJ
STRESS ANALYSIS IN FUSELAGE FRAMES: Bending, shear, torsion,	
cut-outs in fuselages, principles of stiffeners construction, fuselage frames,	
shear flow distribution.	

COURSE OUTCOMES: Upon completion of this course, student will be able to:

anced analytical techniques to comprehend their structural implications.
mine and assess the intricate patterns of shear flow within both open and closed section
mine and assess the intreate patterns of shear now within both open and closed section
loying advanced analytical methodologies to grasp their structural ramifications.
ermine loads on riveted and welded joints for optimized structural performance.
lying idealization concepts to simplify complex structural sections to understand how
v behave, under given loading conditions.
lyze the stresses in wings and fuselage structures
′ 1

Textbooks:

- 1. T.M.G Megson, Aircraft Structures for Engineering Students, Edward Arnold, 44th Edition, 1995.
- 2. Peery, D.J., and Azar, J.J, Aircraft Structures, McGraw-Hill, N.Y., 2nd edition, 1993

Reference books:

- 1. Bruhn. E.H, Analysis and Design of Flight Vehicles Structures, Tristate off set company, USA, 1985.
- 2. Rivello, R.M, Theory and Analysis of Flight Structures, McGraw-Hill, 1993.

Scheme of Examination: Semester End Examination (SEE):

90

SEE Question paper is to be set for 100 marks and the marks scored will be

proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern is shown in Table

	8 8	0		
Compo	onent	Marks	Total Marks	
	CIE Test-1			
CIE	CIE Test-2	40	50	
	CIE Test-3			
	Quiz 1/AAT	10		
SEE	Semester End Examination	50	50	
Grand	l Total	I	100	

 Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO N	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO53.1	3	3	2	-	_	-	-	-	-	-	-	1	3	-
CO53.2	3	3	2	-	_	-	-	-	-	-	-	1	3	-
CO53.3	3	3	2	-	-	-	-	-	-	-	-	1	3	-
CO53.4	3	3	2	-	-	-	-	-	-	-	-	1	3	-
CO53.5	3	3	2	-	-	-	-	-	-	-	-	1	3	-
Average	3	3	2	-	-	-	-	-	-	-	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER -V

COURSE: AIRCRAFT STRUCTURES LAB

Course Code		22ANEL54	CIE Marks	50					
Hours/Week (L: T: P)		0:0:2	SEE Marks	50					
No. of (Credits	1	Examination Hours	03					
Course	Objectives:	-1							
CLO1	To understand the be	havior of beams	under different loading con	litions					
CLO2	To understand about different loads buckling and shear load								
CLO3	To understand about	fundamental free	quency under vibrational loa	ıd					

S.NO	LIST OF EXPERIMENTS	RBT level
1.	Deflection of a Simply Supported, Cantilever, Fixed and Continuous Beam	L3
2.	Verification of Maxwell's Reciprocal Theorem.	L3
3.	Determination of Young's Modulus and Poisson's Ratio	L3
4.	Verification of Superposition Theorem	L3
5.	Buckling load of slender Eccentric Columns and Construction of South well	L3
	Plot	
6.	Determination of forces in the Truss structure	L3
7.	Determination of Unsymmetrical Bending stresses	L3
8.	Determination of fundamental frequency of a cantilever beam and harmonics	L3
	and Frequency spectrum analysis for a cantilever beam.	
9.	Determination of Shear Centre for open section and Closed section	L3
10.	Composite hand layup/ Vacuum Bagging process	L3
11.	Determining the stress patterns and stress concentration using Photo elastic	L3
	apparatus	
12.	Determining the stress, strain in Constant Strength Beam	L3

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO54.1	Calculate the deflections of simply supported beams and cantilever beams.
CO54.2	Apply Maxwell reciprocal theorem and superposition theorem for simply supported beam
	and cantilever beam respectively.
CO54.3	Find the buckling load of the column for fixed and hinged conditions by applying South Well's theorem.
CO54.4	Fabricate the composite using hand layup/Vacuum bagging process
CO54.5	Examine frequency spectrum analysis of cantilever beam.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total Marks
	PART- A	20	
SEE	PART- B	20	50
	VIVA-VOCE	10	
SEE		L	50
Total			

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	MANUAL /	20	
CIE	RECORD		50
	CIE Test-1	20	
	VIVA-VOCE	10	
CIE	Total		50

CO/PO M	lappir	ıg												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO1	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO2	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO3	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO4	3	3	3	2	-	-	-	-	3	2	-	-	3	-
CO5	3	3	3	2	-	-	-	-	3	2	-	-	3	-
Average	3	3	3	2		1	1		3	2			3	1

Low-1: Medium-2: High-3

Biz

SEMESTER -V

COURSE: MINI-PROJECT

Course Code	22ANEMP56	CIE Marks	50
Hours/Week (L: T: P)	0:0:4	SEE Marks	50
No. of Credits	2	Examination Hours	03

Mini-project work: Based on the ability/abilities of the student/s and

recommendations of the mentor, a single discipline or a multidisciplinary Miniproject can be assigned to an individual student or to a group having not more than 4 students.

Individual student performance is evaluated based on the following COs:

CO1	Able to make comprehensive use of the technical knowledge gained from previous courses
CO2	Able to understand technologies concerned with the project
CO3	Able to apply project management skills (scheduling work, procuring parts and documenting expenditures and working within the confines of a deadline).
CO4	Able to analyze, develop and demonstrate the proposed work
CO5	Able to communicate technical information by means of ethical writing and presentation.

CIE procedure for Mini-Project:

a. **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

b. Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college. The CIE marks awarded for the MiniProject shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-Project:

a. Single discipline: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.

94

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

b. Interdisciplinary: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	Review-1		
CIE	Review-2	50	50
SEE	Semester End Examination	50	50
Grand	Total		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO I	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO56.1	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO56.2	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO56.3	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO56.4	3	3	3	3	3	2	3	3	3	3	3	2	2	2
CO56.5	3	3	3	3	3	2	3	3	3	3	3	2	2	2

Low-1: Medium-2: High-3

SEMESTER -V

COURSE: RESEARCH METHODOLOGY

Course Code	22BRMIK57	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: NIL

Course Learning Objectives: To enable students to apply the knowledge of Research Methodology in broad domain of aeronautical engineering by making them to learn:

CLO1	To make the student understand the foundations of Research and problem solution
CLO2	Knowledge in Research design, Qualitative and Quantitative Research
CLO3	Knowledge to formulate and derive static and dynamic aero elastic equations of
	motion.
CLO4	To understand the different types of IPR

Content	No. of Hours/ RBT levels
Module 1 RESEARCH METHODOLOGY: Introduction, Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research and Scientific Method, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India. DEFINING THE RESEARCH PROBLEM: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration	8 Hours/ L3

D	
Kin	

Module 2		
REVIEWING THE LITERATURE: Place of the literature review in research, bringing clarity and focus to research problem, improving research methodology, broadening knowledge base in research area, enabling contextual findings, Review of the literature, searching the existing literature, reviewing the selected literature, developing a theoretical framework, developing a conceptual framework, writing about the literature reviewed. RESEARCH DESIGN : Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs		
Module 3		
 DESIGN OF SAMPLE SURVEYS: Design of Sampling: Introduction, Sample Design, Sampling and Non-Sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. MEASUREMENT AND SCALING: Qualitative and Quantitative Data, DATA COLLECTION: Introduction, Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. 		
Module 4		
TESTING OF HYPOTHESES: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis. INTERPRETATION AND REPORT WRITING: Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Reports.	8 Hours/ L3	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

97

Module 5

INTELLECTUAL PROPERTY: Principles of IPR, Kinds of IPR, Patent- Concepts, Novelty, Utility Inventiveness/Non-obviousness, Procedure for granting and obtaining patents; Copyright- conditions for grant of copyright, Copyright in Literary, Dramatic and Musical ,Works, Sound Recording, Cinematograph Films, Copyright in Computer Programme, Author Special Rights, Right of Broadcasting and performers, Trademark Law and Practices - Procedure of registration of trademark; Emerging Issues and Challenges; Few Future Aspects of Intellectual Property Rights;

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO57.1	Understand the research problem by literature review to solve problems
CO57.2	Develop skills in qualitative and quantitative data analysis and presentation.
CO57.3	Develop advanced critical thinking skills.
CO57.4	Understand to write the report writing and awareness about IPR

Textbooks:

- 1. Business Research Methods Donald Cooper & Pamela Schindler, TMGH, 9th edition
- 2. Business Research Methods Alan Bryman & Emma Bell, Oxford University Press.
- 3. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 4. Lionel Bently., Brad Sherman-Intellectual Property Law, 3rd Edition

Reference books:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes.
- 3. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 4. Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing.

$\boldsymbol{SEMESTER-V}$

Course: Environmental Studies

Course Code	22CIVK58	CIE Marks	50
Hours/Week (L: T: P)	2:0:0	SEE Marks	50
No. of Credits	2	Examination Hours	3

Prerequisites:

Course Objectives: Students will be taught:

CLO1	To understand ecosystem functions and 17 SDG's for sustainable development			
CLO2	To understand advanced energy systems and natural resource management.			
CLO3	To understand global environmental issues, related policies and solutions.			
CLO4	To understand key environmental legislation related to water, air, waste and			
	environmental protection.			
CLO5	To understand e-waste management.			

Content	No. of Hours/
	RBT levels
Module 1 – Ecosystem and SustainabilityEcosystem: Structure of Ecosystem, Types: Forest, Desert, Wetlands, Riverine,Oceanic ecosystems. Sustainability: 17SDG targets and possible actions. Self-Study Component (SSC): Components of the environment.	6 Hours L2
Module 2 - Natural Resource Management Natural Resources: Water resources – Availability & Quality aspects, Energy: Different types of energy, Conventional sources & non-conventional sources of Energy, Solar energy, OTEC Wind Energy, Hydrogen as an alternative energy Self-Study Component (SSC): Alternative Energy sources Disaster Management, Sustainable Mining - case studies and Carbon Trading Self-Study Component (SSC): Alternative Energy sources.	6 Hours L2
Module 3 – Environmental Pollution & Waste Management Environmental Pollution: Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case- studies): Water Pollution, Water borne diseases & water induced diseases, Noise pollution, Soil Pollution, Air pollution (Sources, Impacts, Preventive measures and Public Health Aspects. Waste Management: Bio-medical Wastes; Solid waste; Hazardous wastes;	6 Hours L2

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Industrial and Municipal Sludge Solid Waste Management, types and sources,	
functional elements of SWM, Biomedical Waste Management - Sources,	
Characteristics	
Self-Study Component (SSC): Case studies of air pollution episodes.	
Module 4 - Global Environmental Issues and Environmental Legislation	
Global Environmental Concerns (Concept, policies and case-studies): Ground	
water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion;	
Radon and Fluoride problem in drinking water; Resettlement and rehabilitation	
of people, Environmental Toxicology	6 Hours
Environmental Legislation	L_{2}
Environmental Legislation: Water Act 1974, Air Act 1981, Environmental	
Protection Act 1984, Solid Waste Management Rules-2016, E- Waste	
management Rule - 2022, Biomedical Waste management- 2016	
Self-Study Component (SSC): Case studies on waste management options	
Module 5 - E - Waste Management	
E - Waste Management: Introduction of E- waste; composition and generation.	
Global context in e- waste; E-waste pollutants, E waste hazardous properties,	
Effects of pollutant (E- waste) on human health and surrounding environment,	6 Hound
domestic e-waste disposal, Basic principles of E waste management, Component	
of E waste management. E-waste (Management and Handling) Rules, 2011; and	L2
E-Waste (Management) Rules, 2022 - Salient Features and its implications.	
Self-Study Component (SSC): E-Waste (Management) Amendment Rules,	
2023, 2024	

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

22CIVE58 1	Analyze ecosystem dynamics to formulate strategies for addressing sustainability
22CI V N50.1	challenges and implementing the SDGs.
22CIVK58 2	Evaluate energy technologies to design effective resource management
22CI V K30.2	strategies.
22CIVK58 3	Evaluate the impacts of pollution to develop effective waste management
22CI V K30.3	strategies.
22CIVK58 /	Evaluate global environmental issues to design solutions for sustainable
22CI V K30.4	management.
22CIVK58 5	Interpret environmental laws and regulations for sustainable management
2201 V N30.3	practices.

22CIVK58.6 Understand e-waste management in a global scenario.

Suggested Learning Resources:

Textbooks

- 1. S M Prakash, "Environmental Studies" 3rd Edition, Elite Publishing House, Mangalore, 2018.
- 2. Hester R.E., and Harrison R.M, Electronic Waste Management. Science, 2009.

Reference Books:

- 1. EarchBarucha, "Environmental Studies for UG students", 2004.
- 2. Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited.
- 3. R. Rajagopalan, "Environmental Studies- From Crisis to Cure", 2nd Edition, Oxford university press, New Delhi, 2013.
- 4. Johri R., E-waste: implications, regulations, and management in India and current global best practices, TERI Press, New Delhi.
- 5. Raman Sivakumar, "Principles of Environmental Science and Engineering", 2nd edition, Cengage learning Singapur, 2005.
- 6. G. Tyler Miller Jr., "Environmental Science working with the Earth", Eleventh Edition, Thomson Brooks /Cole, 2006
- 7. Dr. Pratiba Singh, Dr.Anoop Singh and Dr. PiyushMalaviya, "Text Book of Environmental and Ecology", Acme Learning Pvt. Ltd. New Delhi.

Web Reference:

- https://www.hzu.edu.in/bed/E%20V%20S.pdf
- https://onlinecourses.nptel.ac.in/noc23_hs155/preview
- https://onlinecourses.swayam2.ac.in/cec19_bt03/preview
- https://sdgs.un.org/goals
- https://kspcb.karnataka.gov.in/waste-management/biomedical-waste E Waste (Management) Rules, 2022.
- https://kspcb.karnataka.gov.in/sites/default/files/inlinefiles/E%20Waste%20%28Management %29%20Rules%2C%202022.pdf

Scheme of Examination:

Semester End Examination (SEE):

101

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of three test marks will be added to test component. CIE is executed by way of two quizzes/Alternate Assessment Tools(AAT's), some possible AAT's: Seminar/ assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern is shown in Table 1.

Table 1. Distribution of weightage for CIE & SEE of Regular courses				
Component Marks		Total Marks		
CIE	CIE Test-1	40		
	CIE Test-2	40		
	CIE Test-3	40	50	
	Average of CIE	40	50	
	Quiz 1/AAT	05		
	Quiz 2/AAT	05		
SEE	Semester End Examination	100	50	
	Grand Total		100	

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Understand e-waste management in a global scenario.

	CO/PO Mapping														
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
22CIVK58.1	2					1	1	1				2			3
22CIVK58.2	2	2	2			1	3	1				1			3
22CIVK58.3		2	2	2		1	3	1							2
22CIVK58.4		2	2	2		1	3	1				1			2
22CIVK58.5	1	2	2	2		1	2	1						1	2
22CIVK58.6	2	2	1			2	2	1				1			2
Average	1.75	2	1.8	2		1.16	2.3	1				1.25		1	2.33

SEMESTER VI PROFESSIONAL ELECTIVE COURSE- II COURSE: COMPOSITE MATERIALS AND STRUCTURES

Course Code	22ANE55A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Materials and Manufacturing Process

Course Objectives: To enable students to apply the knowledge of Composite Materials and Structures in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Understand the behavior of constituents in the composite materials and it
	applications
CLO2	Understand the various manufacturing processes of Composite materials
CLO3	Apply constitutive equations of composite materials and understand mechanical behavior at micro level.
CLO4	Evaluate the elastic stresses and strains in composites considering different laminate configurations
CLO5	Inspection & Quality Control, Applications of composites in different fields of engineering.

Content	No. of
	Hours/RBT
	levels
Module 1	
Introduction to Composite Materials: Definition, classification of composite materials, classification of reinforcement - particulate, short fiber, whiskers, long fibers composites. matrix materials – metals, ceramics, polymers (including thermoplastics and thermosets), Carbon-Carbon Composites Metal. Matrix Composites: MMC with particulate and short fiber reinforcement, liquid and solid-state processing of MMC – stir casting, squeeze casting. Properties of MMCs, Applications of Al, Mg, Ti based MMC.	08 Hours / L2

103

Module 2					
 Processing of Polymer Matrix Composites: Thermoset Polymers, Hand layup Process, Vacuum Bagging Process, Post Curing Process, Filament winding, Pultrusion, Autoclave Process, VARTM, resin film infusion. Processing of Polymer Matrix Composites: Thermoplastic Polymers, Extrusion process, Injection Moulding Process, Thermo-forming process. Post Processing of Composites – Adhesive bonding, drilling, cutting processes 	08 Hours / L2				
Module 3					
Micromechanics: Introduction – advantages and application of composite materials – types of reinforcements and matrices – micro mechanics – mechanics of materials approach, elasticity approach- bounding techniques – fiber volume ratio – mass fraction – density of composites. Effect of voids in composites.	08 Hours / L3				
Module 4					
Macro mechanics: Generalized Hooke's Law – elastic constants for anisotropic, orthotropic and isotropic materials – macro mechanics – stress-strain relations with respect to natural axis, arbitrary axis – determination of in plane strengths of a lamina – experimental characterization of lamina.					
Failure Theory: Tsai-Hill, Tsai-Wu, Max Stress and Max Strain					
Module 5					
Inspection & Quality Control: Destructive & Non-Destructive Testing, Tensile, Compression, Flexural, Shear, Hardness; ultrasonic testing – A-B-C					
Repairs of Composite Materials and Applications: Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites.					

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO55A.1	Understanding the mechanics of composite materials.
CO55A.2	Understand the processing methods in composite materials.
CO55A.3	Apply the characterization methods for various engineering materials.
CO55A.4	Comprehend and apply theories of structures for engineering problems.
CO55A.5	Understand the inspection techniques used for composite and various application of
	composite in different fields of engineering.

Textbooks:

- 1. K.K Chawla, Composite Materials- Science and Engineering, Springer Verlag, II edition,1998.
- 2. Autar Kaw, Mechanics of Composites, CRC Press, II edition, 2006.

104

Reference books:

- 1. Mein Schwartz, Composite Materials Handbook, Department of Defense, USA, 2002
- 2. Ajay Kapadia, Non-Destructive Testing of Composite Materials, TWI Publications, 2006.
- 3. R M Jones, Mechanics of Composite Materials, Taylor & Francis, 2nd Edn, 2015

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be

proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand [Fotal	·	100

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO55A.1	3	3	-	-	-	-	-	-		-	-	-	3	-
CO55A.2	3	3	-	-	-	-	-	-		-	-	-	3	-
CO55A.3	3	3	-	-	-	-	-	-		-	-	-	3	-

105

CO55A.4	3	3	-	-	-	-	-	-	-	-	-	3	-
CO55A.5	3	3	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	-	-					-			3	

Low-1: Medium-2: High-3

SEMESTER -V PROFESSIONAL ELECTIVE 1

COURSE: AERO PROPULSION -II

Course Code	22ANE55B	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	3	Examination Hours	03

CLO1	The basic functions and challenges in design and development of ramjet and scramjet engines
CLO2	The classification and fundamentals of rocket propulsion and their systems
CLO3	The design and development of solid rocket propulsion and their applications
CLO4	The different types of liquid propellants, their merits and demerits. Development of hybrid rocket and their applications
CLO5	The elementary principles of electric rockets, their types, functions and future rocket engines

Course Learning Objectives: To enable students to apply the knowledge of Rocket Propulsion in broad domain of Aeronautical Engineering by making them to learn:

106

CONTENT	No. of Hrs /RBT Levels
MODULE 1 RAMJET AND SCRAMJET: Operating Principles of ramjet engine, ramjet components and their functions, modes of inlet operations, combustion in ramjet, design of ramjet, performance characteristics. Introduction to scramjet, need for supersonic combustion, problems associated with supersonic combustion salient features of scramjet engine and its applications, Numerical problems	10Hours /L2
MODULE 2 FUNDAMENTALS OF ROCKET PROPULSION: History of rocket engines, basic principles of rocket propulsion, types of rocket engines, applications of rocket, ideal rocket engine, thrust equation, rocket nozzle classifications, performance parameters, staging in rockets, Numerical problems	8 Hours /L3
MODULE 3 SOLID ROCKET PROPULSION: Solid propellant rocket, Selection criteria of solid propellants, burning rate of propellants, propellant grain design considerations, erosive burning, homogeneous propellants, heterogeneous propellants, igniters, types of igniters, Numerical problems	8 Hours /L3
MODULE 4 LIQUID ROCKET PROPULSION: Liquid propellant rocket, monopropellants, bipropellants, selection of liquid propellants, liquid fuels and oxidizers, types of feed systems for liquid rockets, thrust control in liquid rockets, cooling in liquid rockets, hybrid propulsion, limitations of hybrid propulsion, Numerical Problems	8 Hours /L3
MODULE 5 NON-CHEMICAL ROCKET ENGINE: Principles of electrical rocket engine, Classifications of electrical rockets, Electrothermal thrusters, Electrostatic thrusters, Electromagnetic thrusters, Nuclear rocket engines, Solar energy rockets, Numerical Problems	8 Hours /L3

COURSE OUTCOMES: Upon completion of this course, student will be able to:

	Outline the functions and challenges in design and development of ramjet and
CO55B.1	scramjet engines
CO55B.2	Develop and demonstrate a rocket propulsion and their systems
CO55B.3	Build a solid rocket and to examine their propellants and thrust performance.
CO55B.4	Categorize the liquid propellants based on their merits and demerits for a selected mission profile
CO55B.5	Model and exhibit an opposite electric rocket system based the mission requirements

107

Textbooks:

- 1. George P. Sutton and Oscar Biblarz, "Rocket propulsion elements", John Wiley & Sons Inc., Hoboken, New Jersey, 2017
- 2. D.P Mishra, "Fundamentals of Rocket Propulsion", CRC Press, Taylor & Francis Group, 2017

Reference books:

- 1. K Ramamurthi, "Rocket propulsion", Macmillan publishers india ltd, 2010.
- 2. William J. Emrich Jr., "Principles of Nuclear Rocket Propulsion", second edition, Butterworth Heinemann publications, 2023.
- 3. By Stephen D. Heister, William E. Anderson, Timothée L. Pourpoint, Joe Cassady, R. Joseph Cassady, "Rocket Propulsion", Cambridge university press, 2019

Web references/ Additional online information (related to module if any):

- 1. https://archive.nptel.ac.in/courses/101/106/101106082/
- 2. https://archive.nptel.ac.in/courses/112/106/112206073/

Practical knowledge references

- 1. https://study.com/academy/lesson/rocket-propulsion-definition-principles.html
- 2. https://spectra.mhi.com/rocket-engines-the-history-future-of-a-test-facility
- 3. https://www.grc.nasa.gov/www/k-12/rocket/TRCRocket/rocket_principles.html

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **onefull question from each module. Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

108
	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total	·		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO55B.1	3	2	2	-	-	-	-	-	-	1	-	1	3	-
CO55B.2	3	2	1	-	-	1	-	-	-	1	-	1	3	-
CO55B.3	3	2	2	-	-	1	-	-	-	1	-	1	3	-
CO55B.4	2	2	2	-	-	1	-	-	-	1	-	1	3	-
CO55B.5	2	2	2	-	-	1	-	-	-	1	-	1	3	-
Average	3	1	2	-	-	1	-	-	-	1	-	1	3	-

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER -V PROFESSIONAL ELECTIVE 1

COURSE: HELICOPTER DYNAMICS

Course Code	22ANE55C	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Basics of Aeronautical Engineering.

Course Objectives: To make the student familiarize with the principals involved in helicopters and to study the performance and stability aspects of Helicopter under different operating conditions.

CLO1	Understand how helicopters work and their historical development
CLO2	Apply the concept of momentum theory and Blade element theory to analyse helicopter aerodynamics
CLO3	Understand the basics of blade element theory and its application in designing the blade profiles
CLO4	Evaluate the helicopters performance.
CLO5	Explore the dynamics and vibration aspects of helicopters

Content	No. of Hours/ RBT levels
Module 1 Brief overview and basics of Helicopter: Historical development of rotorcraft, comparison of helicopter with fixed wing aircraft, features, roles, parts of helicopter, propulsion & power transmission, basic controls, reaction torque, anti-torque mechanisms, Autorotation concept, different helicopter configurations. Helicopter complexities – Rotor wake, Dissymmetry of Lift in forward flight, Control mechanism, ground resonance, stability & control issues.	08 Hours / L2
Module 2 Momentum theory in hover and axial flight: Modeling rotor as an actuator disc, momentum theory, concept of induced velocity, development of simplified models for induced velocity, induced power, and figure of merit, momentum theory in vertical climb, flow states in climb, descent and vortex ring state.	08 Hours / L2

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 3 Blade element theory in hover and vertical climb: Combined momentum and blade element theory, Ideal twist and taper distribution, rotor solidity, general equation for induced velocity, thrust & torque equations, tip losses,	08 Hours / L2
ground effect and autorotation in vertical descent. Module 4 Helicopter in forward flight & performance Analysis: Momentum theory, induced velocity & induced power variation with forward speed. Blade	
motion in forward flight, reverse flow region, blade element theory, expression for thrust, torque and H-force. Hover performance, Hover in ground Effect, hover out of ground effect, hover ceiling, forward flight performance and power required	08 Hours/ L2
Module 5 Rotor Dynamics & Vibration: Dissymmetry of Lift, flapping Hinge, flapping motion in hover: flapping equilibrium, coning – Causes & Effects, static & dynamic stability of flapping motion in hover. Rotor as Gyroscope – Gyroscopic Effect on Rotor response, Rotor Pitch Control: Collective & Cyclic. Rotor dynamics with Flap- Hinge Offset and Flapping Dynamics, Brief introduction to helicopter vibration.	10 Hours/ L3

	Exclaim the Dente of Haliconstant and their functionality
CO55C.1	Explain the Parts of Hencopters and their functionality
CO55C.2	Apply the Momentum theory for Analysis of Helicopter Aerodynamics
CO55C.3	Apply the Blade Element theory for Analysis of Helicopter Aerodynamics
CO55C.4	Calculate the performance parameters in various flight Conditions
CO55C.5	Understand the complexity of rotor dynamics and helicopter vibrations

Textbooks:

- 1. Alfred Gessow & Garry C. Myers, Jr, Aerodynamics of the helicopter, 8th printing, 1895, Frederick Ungar Publishing Co. New York.
- 2. R. W. Prouty, Helicopter Aerodynamics, Sterling Book House
- 3. J.Gordon Leishman, Principles of Helicopter Aerodynamics, Second Edition, Cambridge University Press.

Reference books:

- 1. John Seddon and Simon Newmann Basic Helicopter Aerodynamics, 3rd Edition, Wiley Aerospace Series, London.
- 2. A.R.S. Bramwell, George Done and Davis Balmford, Bramwell's Helicopter Dynamics, 2nd Edition, Butterworth-Heinemann (Reed Educational & Professional Publishing Ltd.), 2001. 3.
 3.Helicopter Flying Handbook, 2012 by U.S. Department of Transportation, FAA

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

		courses	
	Component	Marks	Total
	-		Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3	40	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular

CO/PO Mapping														
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO55C.1	3	2	-	-	-	-	-	-	1	1	-	1	1	1
CO55C.2	3	3	1	-	-	-	-	-	-	-	-	1	1	1
CO55C.3	3	3	1	-	-	-	-	-	1	1	-	1	1	1
CO55C.4	3	3	1	-	-	-	-	-	1	1	-	1	1	1
CO55C.5	3	3	-	-	-	-	-	-	-	-	-	1	1	1
Average	3	3	1						1	1		1	1	1

Low-1: Medium-2: High

SEMESTER -V

COURSE: AIRCRAFT SYSTEMS AND INSTRUMENTATION

Course Code	22ANE55D	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

COURSE LEARNING OBJECTIVES: To enable students to apply the knowledge of aircraft systems and instrumentation in broad domain of aeronautical engineering by making them to learn:

CLO1	To provide the knowledge on the aircraft control systems.
CLO2	learn about the aircraft systems
CLO3	Acquire the knowledge of aircraft engine systems
CLO4	To provide the basic knowledge of Aircraft auxiliary systems
CLO5	Acquire the knowledge on aircraft and air data instruments.

Content	No. of Hours/ RBT levels
Module 1 AIRCRAFT CONTROL SYSTEMS: Conventional Systems, fully powered flight controls, Power actuated systems, Modern control systems, Digital fly by wire systems, Auto pilot system active control Technology.	08 Hours/ L2
Module 2 AIRCRAFT SYSTEMS: Hydraulic systems, Study of typical workable system, components, Pneumatic systems, Advantages , working principles, Typical Air pressure system, Brake system, Typical Pneumatic power system, Components, Landing Gear systems, Classification.	08 Hours/ L2
Module 3 ENGINE SYSTEMS: Fuel systems for Piston and jet engines, Components of multi engines. lubricating systems for piston and jet engines - Starting and Ignition systems - Typical examples for piston and jet engines.	08 Hours/ L2

Module 4						
AUXILIARY SYSTEM: Basic Air cycle systems, Vapour Cycle system	L2 s					
Evaporative vapor cycle systems, Evaporative air cycle systems, Fire protection	1					
systems, Deicing and anti-icing systems.	1					

113

Module 5

AIRCRAFT INSTRUMENTS: Flight Instruments and Navigation Instruments, Gyroscope, Accelerometers, Air speed Indicators, TAS, EAS, Mach Meters, Altimeters, Principles and operation, Study of various types of engine instruments, Tachometers, Temperature gauges, Pressure gauges, Operation and Principles.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO553.1	Distinguish the conventional and modern control systems.
CO553.2	Classify the aircraft systems.
CO553.3	Categorize different types of aircraft instruments.
CO553.4	Comprehend the engine and fuel systems
CO553.5	Understand the basic flight and air data instrumentation

Textbooks:

- 1. Ian Moir and Allan Seabridge, " Aircraft Systems: Mechanical, Electrical and Avionics- Subsystem Integration ", Wiley India Pvt Ltd, 3rd edition, 2012.
- 2. Pallet, E.H.J, "Aircraft Instruments and Integrated Systems ", Longman Scientific and Technical Institute, 1996.

Reference books:

- 1. Lalit Gupta and OP. Sharma, "Aircraft Systems (Fundamentals of Flight Vol. IV) Himalayan Books 2006.
- 2. R.W. Sloley and W.H. Coulthard, "The aircraft Engineers Handbook, No4, Instruments", 6th Edition, 2005.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least onefull question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

114

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	CIE Test-3	_	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand [Fotal	100	

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO553.1	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO553.2	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO553.3	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO553.4	3	3	-	-	-	-	-	-	-	-	-	-	3	-
CO553.5	3	3	-	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	-	-	-	-	-	-	-	-	-	-	3	-

Low-1: Medium-2: High-3

VI SEMESTER SYLLABUS

SEMESTER – VI

COURSE: FINITE ELEMENT METHODS

Course	Code	22ANE61	CIE Marks	50			
Hours/	Week (L: T: P)	2:2:2	SEE Marks	50			
No. of (Credits	4	Examination Hours	03			
CLO1	To give exposure to	o various methods o	f solution, in particular the	finite element method.			
CLO2	2 To expose the student to a wide variety of problems involving discrete and continuum elements						
CLO3	To impart knowledge in the basic theory of finite element formulation						
CLO4	To allow the student to learn and understanding how element characteristic matrices are generated						
CLO5	5 To impart knowledge in assembly of finite element equations and solve for the unknow						

Pre-requisite: Aircraft Structures

Course Learning Objectives: To enable students to apply the knowledge of finite element methods in broad domain of aeronautical engineering by making them to learn:

Content	No. of Hours/ RBT levels
Module 1 INTRODUCTION TO FEM: Introduction to FEM, FDM and FVM, Review of various approximate methods – Raleigh Ritz's, Galerkin and finite difference methods Governing equation and convergence criteria of finite element method.	08 Hours/ L3
Module 2 DISCRETE ELEMENTS: Bar elements, uniform sections, mechanical and thermal loading, varying sections, truss analysis. Beam element with various loadings and boundary conditions - longitudinal and lateral vibration. Use of local and natural coordinates.	10 Hours/ L3
Module 3 CONTINUUM ELEMENTS: Plane stress, Plane strain and axisymmetric problems, constant and linear strain triangular elements, stiffness matrix, axisymmetric load vector, shape functions of Hexahedron and tetrahedron (3D Elements)	08 Hours/ L3
Module 4 ISOPARAMETRIC ELEMENTS: Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and consistent load vector, Gaussian integration.	08 Hours/ L3

Module 5	
FIELD PROBLEM: Heat transfer problems, Steady state fin problems,	08 Hours/ L3
Derivation of element matrices for two dimensional problems, Torsion problems.	

LIST OF EXPERIMENTS

- 1. Structural modeling and analysis of simply supported beam with central point load.
- 2. Structural modeling and analysis of cantilever beam with point loading
- 3. Structural modeling and analysis of simply supported beam with uniformly varying load.
- 4. Structural modeling and analysis of aircraft landing gear strut
- 5. Structural modeling and analysis of circular and rectangular cutout sections.
- 6. Structural modeling of sandwich beam of rectangular cross-section and analyses for stresses.
- 7. Structural modeling of a three-dimensional wing.
- 8. Structural modeling and stress analysis of a fuselage bulkhead.
- 9. Structural modeling and stress analysis of a simply supported rectangular plate uniformly compressed in one direction.
- 10. Structural modeling and stress analysis of a simply supported rectangular plate uniformly compressed in one direction with a cut- out in center.

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

Understand the approximate methods used for solving structural mechanics problems **CO61.1** and ormulation of governing equation for the finite element method

CO61.2 Solve 1-D problems related to static analysis of structural members

CO61.3 Formulate the elemental matrices for 2-D problems.

Exposure to iso-parametric element formulations and importance of numerical **CO61.4** integration.

CO61.5 Solve Eigen value problems and scalar field problems.

Textbooks:

- 1. Dhanaraj. R and K.Prabhakaran Nair, "Finite Element Method ", Oxford university press, India, 2015.
- 2. Rao. S.S., The Finite Element Methods in Engineering, Butterworth and Heinemann, 5th edition, 2010.
- 3. Reddy J.N. An Introduction to Finite Element Method McGraw Hill, 3rd edition, 2005.
- 4. Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to Finite Elements in Engineering Prentice Hall India, 3rd Edition, 2003. <u>Reference books:</u>

- 1. Bathe K.J. and Wilson, E.L., Numerical Methods in Finite Elements Analysis, Prentice Hall of India, 1985.
- 2. Krishnamurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2nd edition, 2001.
- 3. Larry J Segerlind, 'Applied Finite Element Analysis', 2nd Edition, John Wiley and Sons, Inc. 1985.
- 4. Robert D Cook, David S Malkus, Michael E Plesha, 'Concepts and Applications of Finite Element Analysis', 4th edition, John Wiley and Sons, Inc., 2003.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module. Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Laboratory	20	20
SEE	Semester End Examination	50	50
Grand '	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO61.1	3	3	2	2	2	-	-	-	-	-	-	1	3	-
CO61.2	3	3	2	2	2	-	-	-	-	-	-	1	3	-
CO61.3	3	3	2	2	2	-	-	-	-	-	-	1	3	-
CO61.4	3	3	2	2	2	-	-	-	-	-	-	1	3	-
CO61.5	3	3	2	2	2	-	-	-	-	-	-	1	3	-
Average	3	3	2	2	2	-	-	-	-	-	-	1	3	-

Low-1: Medium-2: High-3

SEMESTER – VI

COURSE: FLIGHT MECHANICS

Course Code	22ANE62	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: Elements of Aeronautics

Course Learning Objectives: To enable students to apply the knowledge of airplane performance and stability in broad domain of aeronautical engineering by making them to learn:

CLO1	Understand the aircraft performance in steady unaccelerated and accelerated flight
CLO2	. Understand the airplane performance parameters and acquire the knowledge on aircraft maneuvers performance.
CLO3	Understand the basics of aircraft stability and control
CLO4	Understand the static longitudinal and static directional stability.

Content	No. of Hours/
	RBT levels
Module 1	
The Equations of Motion Steady Unaccelerated Flight: Introduction, four	
forces of flight, General equation of motion, Power available and power required	
curves. Thrust available and thrust required curves. Conditions for power	
required and thrust required minimum. Thrust available and maximum velocity,	
Power available and maximum velocity, Altitude effects on power available and	
power required; thrust available and thrust required. Steady Performance – Level	8 Hours / L4
Flight, Climb & Glide	
Performance: Equation of motion for Rate of climb- graphical and analytical	
approach -Absolute ceiling, Service ceiling, Time to climb - graphical and	
analytical approach, climb performance graph (hodograph diagram); maximum	
climb angle and rate of climb Gliding flight, Range during glide, minimum rate	
of sink and shallowest angle of glide.	
Module 2	
Fundamental Airplane Performance Parameters: The fundamental	
Parameters: Thrust – to – weight ratio, Wing loading, drag polar, and lift-to –	
drag ratio. Minimum velocity. Aerodynamic relations associated with lift-to-	o 11 (1 o
drag ratio.	8 Hours / L3
Propeller driven Airplane: Physical consideration, Quantitative formulation,	
Breguet equation for Range and Endurance, Conditions for maximum range and	
endurance.	
Jet Airplane: Physical consideration, Quantitative formulation, Equation for	
Range and Endurance, Conditions for maximum range and endurance, Effect	
of head wind tail wind. Module 3	
Aircraft Performance in Accelerated Flight Take-off Performance:	
Calculation of Ground roll, Calculation of distance while airborne to clear	
obstacle, Balanced field length	
Landing Performance and Accelerated Climb: Calculation of approach	
distance, Calculation of flare distance, Calculation of ground roll, ground effects.	8 Hours / L.5
Acceleration in climb.	0 110013 / 125
Maneuvers Performance	
Turning performance: Level turn, load factor, Constraints on load factor,	
Minimum turn radius, Maximum turn rate. Pull-up and Pull-down maneuvers:	
(Turning rate, turn radius). Limiting case for large load factor. The V-n	
diagram. Limitations of pull up and push over.	

Module 4	
Static Longitudinal Stability and Control-Stick Fixed: Historical	
perspective, Aerodynamic Nomenclature, Equilibrium conditions, Definition of	
static stability, Definition of longitudinal static stability, stability criteria,	9 II.o.uma / I. 4
Contribution of airframe components: Wing contribution, Tail contribution,	onours/L4
Fuselage contribution, Power effects- Propeller airplane and Jet airplane	
Introduction, Trim condition. Static margin. Stick fixed neutral points.	
Longitudinal control, Elevator power, Elevator angle versus equilibrium lift	
coefficient, Elevator required for landing, Restriction on forward C.G. range.	
Module 5	
Static Longitudinal Stability & Static Directional Stability and Control-	
Stick free: Introduction, Hinge moment parameters, Control surface floating	
characteristics and aerodynamic balance, Estimation of hinge moment	
parameters, The trim tabs, Stick-free Neutral point, Stick force gradient in	Q Hours / I 3
unaccelerated flight, Restriction on aft C.G. Introduction, Definition of	8110u187 L3
directional stability, Static directional stability rudder fixed, Contribution of	
airframe components, Directional control. Rudder power, Stick-free directional	
stability, Requirements for directional control, Rudder lock, Dorsal fin. One	
engine inoperative condition. Weather cocking effect.	

CO(2.1)	Apply the basic airplane performance parameters.	L4
CU62.1		
CO62.2	Differentiate the aircraft performance in steady unaccelerated and	
	accelerated flight.	L3
CO62.3	Apply the basic concepts of aircraft stability and control.	L5
CO62.4	Differentiate the static longitudinal and static directional stability.	L4

Textbooks:

- 1. John D. Anderson, Jr. "Aircraft Performance and Design", McGraw-Hill International Editions, Aerospace Science/ Technology Editions, 1999.
- 2. John D. Anderson, Jr., "Introduction to flight" McGraw-Hill International Editions, Aerospace Science/ Technology Editions, 2000.
- 3. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley Son Inc, New York, 1988.
 - 4. Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2007.

122

Reference books:

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley Son Inc, New York, 1988.
- 2. Barnes W. McCormick, `Aerodynamics, Aeronautics, and Flight Mechanics`, John Wiley& Sons, Inc. 1995.
- 3. Bandu N. Pamadi, 'Performance, Stability, Dynamics and Control of Airplanes', AIAA 2nd Edition Series, 2004.
- 4. John D. Anderson, Jr., "Introduction to flight" McGraw-Hill, International Editions, Aerospace Science Technology Editions, 2000.

W.J. Duncan, The Principles of the Control and Stability of Aircraft, Cambridge University Press, 2016.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be

proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module**.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand T	Total	·	100

					C	CO/PC) Maj	pping						
СО/РО	POI	P02	PO3	P04	PO5	P06	PO7	PO8	PO9	P010	P011	P012	PSO1	PSO2
CO62.1	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO62.2	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO62.3	3	3	2	2	-	1	1	1	-	-	-	1	3	1
CO62.4	3	3	2	2	-	1	1	1	-	-	-	1	3	1
Average	3	3	2	2	-	1	1	1	-	-	-	1	3	1

Low-1: Medium-2: High-3

SEMESTER VI

COURSE: MAJOR PROJECT PHASE-1

Course Code	22ANEP65	CIE Marks	100
Hours/Week (L: T: P)	0:0:4	SEE Marks	-
No. of Credits	2	Examination Hours	-

Content	No. of Hours/RBT levels
Project work phase 1: Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary project can be assigned to an individual student or to a group having not more than 4 students. In extraordinary cases, like the funded projects requiring students from different disciplines, the project student strength can be 5 or 6. CIE procedure for Project Work Phase - 1:	
a. Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.	
The CIE marks awarded for the project work phase -1, shall be based on the evaluation of the project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology) using Rubrics, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the Project report shall be the same for all the batchmates.	04 Hours
b. Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college Participation	
of external guide/s, if any, is desirable.	
The CIE marks awarded for the project work phase -1, shall be based on the evaluation of project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates as per Rubrics covering all Program Outcomes.	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

	Able to make comprehensive use of the technical knowledge gained from previous
CO65.1	courses
CO65.2	Able to understand technologies concerned with the project
CO65.3	Able to apply project management skills (scheduling work, procuring parts and
	documenting expenditures and working within the confines of a deadline).
	Able to analyze, develop and demonstrate the proposed work
CO65.4	
CO65.5	Able to communicate technical information by means of ethical writing and
	presentation.

Table 1: Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	Review-1		
CIE	Review-2	100	100
SEE	Semester End Examination		
Grand Total			100

CO/PO .	Map	ping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO65.1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO65.2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO65.3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO65.4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO65.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Average	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER VI

COURSE: FLIGHT SIMULATION LAB

Course Code	22ANEL66	CIE Marks	50
Hours/Week (L: T: P)	0:0:2	SEE Marks	50
No. of Credits	1	Examination Hours	03

Course Learning Objectives:

CLO1	Be acquainted with basic principles of Matlab using different
CLO2	Acquire the knowledge on Sims cape
CLO3	Understand the procedures for using Simulink

LIST OF EXPERIMENTS	RBT LEVELS
1. Plot root locus with variables in transfer function through	L3
MATLAB	
2. Draw Bode plot from a transfer function in MATLAB and explain	L3
the gain and phase margins	
3. Model mass-spring damper system in MATLAB	L3
4. Model mass-spring damper in Simulink and Sims cape	L3
5. Simulate a DC motor in Simulink and Sims cape	L3
6. Simulate a DC motor with PID controller and tune the PID	L3
7. Simulate a package drop from an aircraft	L3
8. Simulate and visualize aircraft take off	L3
9. Model an UAV package delivery	L3
10. Estimate G forces for flight data	L3
11. Simulate aircraft longitudinal motion and demonstrate the effect	L3
of static margin variation for a doublet input in pitch	
12. Simulate a rotor-flying manipulator	L3
13. Model Maneuver stabilization for a mini drone	L3

CO66.1	CO1	Plot the root locus and bode plot
CO66.2	CO2	Calculate the dynamic response of aircraft and uav
CO66.3	CO3	Build physical component models based on physical connections that directly integrate with block diagrams and other modeling paradigms.

Scheme of Examination:

Semester End Examination (SEE): Distribution of weightage for SEE of Regular courses

	Component	Marks	Total
			Marks
	PART- A	20	
SEE	PART- B	20	50
	VIVA-VOCE	10	
	50		

Continuous Internal Evaluation (CIE): Distribution of weightage for CIE of Regular

	Component	Marks	Total Marks
	MANUAL /	20	
CIE	RECORD		50
	CIE Test-1	20	
	VIVA-VOCE	10	
	50		

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO66.1	3	2	2	-	3	-	-	-	-	-	-	-	-	2
CO66.2	3	2	2	-	3	-	-	-	-	-	-	-	-	2
CO66.3	3	2	2	-	3	-	-	-	-	-	-	-	-	2
Average	3	2	2	-	3	I	-	-	I	-	-	-	-	2

SEMESTER VI PROFESSIONAL ELECTIVE COURSE- II

COURSE: SPACE MECHANICS

Course Code	22ANE63A	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Learning Objectives:

CLO1	To introduce the basic concepts of astronomy
CLO2	To understand the motion of the space craft in their relative gravitational filed
CLO3	Learn about the satellite injection and perturbation in various orbits
CLO4	To provide insight of interplanetary spacecraft mission.
CLO5	Understand the Ballistic Missile Trajectories and Re-entry phase.

Content	No. of Hours/ RBT levels
Module 1 INTRODUCTION TO SPACE MECHANICS: Basic concepts: The solar system, Reference frames and coordinate systems, The celestial sphere, The ecliptic, Motion of vernal equinox, Sidereal time, Solar Time, Standard Time, The earth 's atmosphere.	08 Hours/L3
Module 2 THE GENERAL N- BODY PROBLEM: Conic Sections, Two-Body Problem, Conservation of Angular Momentum and Energy, Kepler's laws of planetary motion and proof of the laws, Trajectory Equation, Elliptical Orbit, Circular Orbit, Parabolic Trajectory, Hyperbolic Trajectory, the circular restricted three body problem– the general N-body problem.	10 Hours/L3
Module 3 SATELLITE INJECTION AND SATELLITE PERTURBATIONS: Classical Orbital Elements, Time of Flight, General aspects of satellite injection – satellite orbit transfer, Hohmann Transfer – orbit deviations due to injection errors – special and general perturbations – method of variations of orbital elements.	08 Hours/L3

129

Module 4	
INTERPLANETARY TRAJECTORIES: Introduction, Patched-Conic	08 Hours/L3
Method, concept of sphere of influence – launch of interplanetary	
spacecraft – trajectory estimation about the target planet, Phase Angle at	
Departure, Planetary Arrival, Gravity Assists.	
Module 5	
ATMOSPHERIC ENTRY: Introduction to ballistic missile trajectories –	
Entry Flight Mechanics– Ballistic Entry– Gliding Entry– Skip Entry–	08 Hours/L3
Entry Heating– Space Shuttle Entry.	

CO63A.1	Understand the basic Concepts in Orbital Mechanics and Attitude Dynamics.
CO63A.2	Analyze the Orbital motion of a satellite relative to their gravitational body.
CO63A.3	Understand the Orbital elements to define the shape, size and orientation of an orbit
	for satellite injection.
CO63A.4	Estimate the trajectory/orbit of a space vehicle or a satellite in a suitable coordinate system.
CO63A.5	Understand the Ballistic Missile Trajectories and Re-entry phase.
Textbooks:	

1. David A. Vallado., "Fundamentals of Astrodynamics and Applications" Microcosm Press Hawthorne, CA.

 Craig A. Kluever, "Space Flight Dynamic" John Wiley & Sons, Inc, 2018. <u>Reference books:</u>

- 1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co.,Ltd, London,1982
- 2. Howard D. Curtis., "Orbital Mechanics for Engineering Students" Second Edition, Elsevier Ltd

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

130

	Component	Marks	Total						
			Marks						
	CIE Test-1								
CIF	CIE Test-2	40	50						
CIL	CIE Test-3	40	50						
	Quizzes /Assignment	10							
SE	Semester End Examination	50	50						
Е									
	Grand Total								

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	909	PO10	P011	PO12	PSO1	PSO2
CO63A.1	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO63A.2	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO63A.3	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO63A.4	3	3	2	-	1	-	-	-	-	-	-	-	3	-
CO63A.5	3	3	2	-	1	-	-	-	-	-	-	-	3	-
Average	3	3	2	-	1	-	-	-	-	-	-	-	3	

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE COURSE- II

COURSE: CONTROL ENGINEERING AND MICROPROCESSORS

Course Code	22ANE63B	CIE Marks	50
Hours/Week (L: T: P)	2:2:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Engineering Mathematics

Course Objectives: To enable students to apply the knowledge of Control engineering and Microprocessors in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Open and Closed Loop Systems, Feedback Control systems and Mathematical
	Models.
CLO2	Transfer Functions, Block Diagrams and Signal flow graphs
CLO3	System stability and types of controllers
CLO4	Basics about linear and digital IC's
CLO5	Architecture of Microprocessor and its application

Content	No. of
	Hours/RBT
	levels
Module 1	
MATHEMATICAL MODELLING OF CONTROL SYSTEMS: Concept	10
of system and its types, control system- Open loop and closed loop systems	Hours/L3
with examples, Concepts of feedback and basic structure of feedback control	
system. DC and AC motors in control systems, Transfer functions definition	
and its properties - Transfer function models of mechanical systems,	
electrical circuits -Analogous systems: Force voltage and Force current	
analogy. Torque voltage and Torque current.	
Module 2	
BLOCK DIAGRAMS AND SIGNAL FLOW GRAPHS: Block	08
representation of control systems and terminologies, block diagram algebra	Hours/L3
and reduction of block diagrams, Signal flow graph method, Mason's gain	
formula and its applications.	

132

Module 3	
STABILITY AND CONTROL: System stability analysis using Routh's –	08
Hurwitz Criterion, Root locus, Time response and frequency response - Bode	Hours/ L4
plot, Digital controllers and its types, application-Compensation methods -	
Series and feedback compensation, Lead, Lag and Lead-Lag Compensators	
Module 4	
LINEAR AND DIGITAL IC'S: Comparison Between Analog and Digital	08
Systems - Number Representation - Binary, Octal and Hexadecimal Number	Hours/L4
Systems- Half Adder and Full Adder -Multiplexers- Demultiplexers - Decoders	
– Encoders.	
Module 5	
MICROPROCESSORS: Architecture of Intel 8085- Instruction Formats -	08
Addressing Modes - Simple Assembly Language Programs - Architecture and	Hours/L4
Functioning of Intel 8086 Processor - Instruction Formats - Addressing	
Modes. Microprocessor Applications in aerospace	

CO63B.1	Comprehend the open loop & closed loop systems and Mathematical Models.
CO63B.2	Solve the complex physical systems using Block diagrams and Signal Flow Graphs
	and obtain Transfer function
CO63B.3	Apply the feedback control systems for stability and Controllers
CO63B.4	Summarize the basic knowledge on Linear and Digital ICs.
CO63B.5	Outline the architectures of Microprocessor and its application

Textbooks:

1. Control Engineering- U.A. Bakshi and V.U. Bakshi, Technical Publications Autar Kaw,

- 2. Control Systems Engineering, A. NagoorKani, RBA Publications 2014 edition,2006. **Reference books:**
 - 1. Modern Control Engineering, Katsuhiko Ogatta, Pearson Education 2004
 - 2. Control Systems Engineering, I.J. Nagrath and M. Gopal, New Age Publishers 2017
 - 3. Modern Control Systems, Richard. C. Dorf and Robert.H. Bishop Addison Wesley 1999

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		50
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	Grand Total		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO	POI	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO63B.1	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO63B.2	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO63B.3	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO63B.4	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO63B.5	3	3	2	2	1	-	-	-	1	1	1	-	1	1
Average	3	3	2	2	1	-	-	-	1	1	1	-	1	1

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER VI

PROFESSIONAL ELECTIVE COURSE- II

COURSE: ROCKET AND MISSILES

Course Code	22ANE63C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: low speed and high-speed Aerodynamics and Propulsion Objectives:

To give revelation on basic concepts of rocket motion, rocket aerodynamics, staging & control of rockets, materials and propulsion systems of rockets and missiles to students to augment their knowledge in the region of rockets and missile flight.

CLO1	Understand the historical development of rockets and missiles and their significance in aerospace technology.
CLO2	Analyze the Aerodynamic Characteristics of Rockets and Missiles.
CLO3	Gaining knowledge about the Trajectory Motion of Rockets and Missiles.
CLO4	Gain the knowledge on the separation of stages of rocket and its control
CLO5	Understand the Materials used in Rockets and Missiles

Content	No. of Hours/ RBT levels
Module 1	
CLASSIFICATION OF ROCKETS AND MISSILES: History of rockets and	08 Hours/ L2
missiles, Various methods of classification of missiles and rockets - Basic	
aerodynamic characteristics of surface to surface, surface to air, air to surface	
and air to air missiles – Examples of various Indian space launch vehicles and	
missiles-Current status of Indian rocket and missile program.	
Module 2	09 Hound / I 2
AERODYNAMICS OF ROCKETS AND MISSILES Forces Acting on a	US HOURS/ LS
Missile While Passing Through atmosphere, methods of Describing	
Aerodynamic Forces and Moments – Lateral Aerodynamic Moment – Lateral	
Damping Moment and Longitudinal Moment of a Rocket – lift and Drag Forces.	

Head of the Department

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 3 ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD: One Dimensional and Two-Dimensional Rocket Motions in Free Space and Homogeneous Gravitational Fields – description of Vertical, Inclined and Gravity Turn Trajectories – Determination of range and Altitude.	08 Hours/ L3
Module 4 MATERIALS FOR ROCKETS AND MISSILES: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for thermal protection and for pressure vessels.	08 Hours/L2

CO63C.1	Classify rockets and missiles based on various methods and explain the basic aerodynamic characteristics of different types.
CO63C.2	Analyze the Motion of Rocket and Missiles in free space and gravitational field
CO63C.3	Analyze the Aerodynamic Forces and Moments of Rockets and Missiles.
CO63C.4	Describe the Stage separation of Multi staging rocket and various aerodynamic & jet control methods
CO63C.5	Assess and choose appropriate Materials for Rockets and Missiles.

Textbooks:

- 1. Cornelisse, J.W., "**Rocket Propulsion and Space Dynamics**", J.W., Freeman & Co. Ltd. London, 1982.
- 2. Sutton, G.P., et al., "**Rocket Propulsion Elements**", 8th edition John Wiley & Sons Inc., New York.

Reference books:

- 1. Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, New Delhi 1998.
- 2. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw-Hill Book Co. Inc., 1982

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

136

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIE	CIE Test-3		50
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	Grand Total		100

 Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO	POI	PO2	PO3	PO4	PO5	90d	707	PO8	60d	PO10	PO11	P012	PSO1	PSO2
CO63C.1	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO63C.2	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO63C.3	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO63C.4	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO63C.5	3	3	-	-	-	-	-	-	-	-	-	-	2	-
Average	3	3	-	-	_	-	-	_	-	-	_	-	2	-

Low-1: Medium-2: High-3

SEMESTER VI PROFESSIONAL ELECTIVE COURSE- I

COURSE: FLIGHT TESTING

Course Code	ANE2363D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Aircraft Performance, Aircraft Stability and control

Course Learning Objectives: To enable students to apply the knowledge of Flight Testing in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Scope of flight testing, its types and reducing uncertainty.
CLO2	Purpose, scope and working of various instruments employed for flight-testing.
CLO3	Performance of flight at different operating conditions.
CLO4	Stability and control aspects at various flight condition.
CLO5	Various regulations and recovery techniques.

Content	No. of Hours/RBT levels
Module 1 INTRODUCTION TO FLIGHT TESTING: Purpose and scope of flight- testing, basic definition, types of flight tests, sequence of flight testing, planning the test program, governing regulations. Aircraft weight and center of gravity, flight testing tolerances. Method of reducing data uncertainty in flight test data -sources and magnitudes of error, avoiding and minimizing errors.	08 Hours/ L6
Module 2 FLIGHT TEST INSTRUMENTATION: Planning flight test instrumentation, sensing and transducing techniques. Measurement of linear and angular displacements, velocities and accelerations, vibration, force, temperature - onboard and ground-based data acquisition system. Radio telemetry	08 Hours/ L5

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 3 PERFORMANCE FLIGHT TESTING - RANGE, ENDURANCE AND CLIMB: Airspeed –in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Range and endurance estimation of propeller and jet aircraft. Climb performance methods. Turning performance limitations. Drag estimation. Take-off and landing - methods, procedures and data reduction.	08 Hours/ L5
Module 4 STABILITY AND CONTROL: Flight test Methods: Static longitudinal stability; Dynamic longitudinal stability. Lateral and directional static stability: Lateral and directional dynamic stability, Data reduction. Maneuvering stability methods, Regulations and data reduction.	10 Hours/ L4
Module 5 FLYING QUALITIES: MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test procedures. Hazardous flight testing: Stall and spin- regulations, test and recovery techniques. Test techniques for flutter, vibration and buffeting.	08 Hours/ L6

CO63D.1	Develop a flight test program by integrating the purpose, scope, and regulations governing flight testing along with managing aircraft weight and center of gravity considerations.	L6
CO63D.2	Appraise the scope and working of various instruments employed for flight testing by minimizing errors.	L5
CO63D.3	Evaluate the performance of flight at different operating conditions.	L5
CO63D.4	Infer the longitudinal, lateral and directional stability and control aspects at various flight conditions.	L4
CO63D.5	Conclude various regulations and recovery techniques of flying and handling qualities.	L6

Textbooks:

1. Ralph D Kimberlin, "**Flight Testing of Fixed Wing Aircraft**", AIAA educational Series, 2003.

Reference books:

1. AGARD," Flight Test Manual ", Vol. I to IV.

B.w.Z

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

Scheme of Examination:

Semester End Examination (SEE): SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Table1: Distribution of weightag	ge for CIE& SEE	of Regular courses	
	Component	Marks	Total Marks	
CIE	CIE Test-1 CIE Test-2 CIE Test-3 Quiz 1/AAT	40	50	
SEE	Semester End Examination	50	50	
Grand	Total		100	

CO/PO Mapping														
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	60d	PO10	P011	P012	PSOI	PSO2
CO63D.1	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO63D.2	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO63D.3	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO63D.4	3	3	2	2	-	1	1	1	2	2	1	1	2	1
CO63D.5	3	3	2	2	-	1	1	1	2	2	1	1	2	1
Average	3	3	2	2	-	1	1	1	2	2	1	1	2	1

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER VI OPEN ELECTIVE COURSRE -I

COURSE: INTRODUCTION TO AERONAUTICS

Course Code	22ANE64A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to Aerospace Engineering in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To provide with a historical perspective on aviation and space technology, including the pioneers of aeronautical engineering
CLO2	To introduce fundamental principles of aerodynamics, and the forces acting on an aircraft.
CLO3	To explore the properties of materials used in flight vehicles, emphasizing the importance and introducing composite materials
CLO4	To introduce various aircraft power plants, and provide an overview of propulsion principles
CLO5	To familiarize with flight instruments and navigation instruments, and gyroscopic instruments, explaining their principles of operation

Content	No. of Hours/ RBT levels
Module 1	
HISTORY OF AVIATION AND SPACE TECHNOLOGY:	08 Hours/ L3
First Aeronautical Engineers, Atmosphere and its properties - The	
International Standard Atmosphere, the Physical Properties of Air,	
classification of aircrafts- lighter than aircraft, heavier than aircraft, basic	
components of an aircraft, roles of aircrafts development in military aviation	
Module 2	
BASIC AERODYNAMICS: Bernoulli's Principle, Airfoils,	08 Hours/ L3
nomenclature, wing planform, angle of attack, forces over wing section-lift,	
drag, Thrust, weight and moments, measurement of airspeed, aircraft	
motions, control surfaces and high lift devices.	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 3 AIRCRAFT STRUCTURES AND MATERIALS: Properties of flight vehicle Materials; importance of strength to weight ratio, classification and characteristics of composite materials.	08 Hours / L3
Module 4 AIRCRAFT PROPULSION: Aircraft power plants, classification based on power plant engine and principle of operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets, use of propellers, Introduction to types of rockets, missiles.	10 Hours / L3
Module 5 AIRCRAFT INSTRUMENTS : Flight instruments and navigation instruments – accelerometers, air speed indicators – Mach meters – altimeters – gyroscopic instruments. Principles and operation.	08 Hours/ L3

CO64A.1	Have a foundational knowledge of the history of aviation, an understanding of the atmosphere's properties, and the ability to classify different types of aircraft
CO64A.2	Capable of applying Bernoulli's Principle to understand lift and drag, describe airfoil nomenclature, and analyze forces
CO64A.3	Assess the properties of materials used in aviation, recognize the significance
CO64A.4	Categorizing and describing different types of aircraft engines, explaining their operational principles
CO64A.5	Have a comprehensive understanding of various flight and navigation instruments, including their principles of operation

Textbooks:

- 1. A.C. Kermode, "Flight without formulae", Pearson Education India, 1989. ISBN: 9788131713891.
- 2. John D. Anderson, "Introduction to Flight", McGraw-Hil Education, 2011. ISBN 9780071086059.

Reference books:

- 1. Nelson R.C., "Flight stability and automatic control", McGraw-Hill International Editions, 1998. ISBN 9780071158381.
- Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 2011. ISBN 978111965006.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four

142

sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Total Marks	
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

 Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
СО/РО	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO64A.1	3	2	-	-	-	-	-	-	-	-	-	1	1	-
CO64A.2	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO64A.3	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO64A.4	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO64A.5	3	2	-	-	-	-	-	-	-	-	-	1	2	
Average	3	2	-	-	-	-	-	-	-	-	-	1	2	-

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER VI OPEN ELECTIVE COURSE -I

COURSE: THE HISTORY OF AVIATION

Course Code	22ANE64B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of history of aviation Engineering in broad domain of Aeronautical Engineering by making them to learn:

CLO1	Explore the historical origins of human flight, from early dreamers to early inventors
	and pioneers
CLO2	Examine the Wright brothers' journey to achieve powered, controlled flight and
	understand the principles they applied
CLO3	Investigate the rapid advancements in aviation during the early 20th century,
	including the impact of World War I
CLO4	Analyze the role of aviation during World War II, including developments in military
	aircraft and the Cold War-era arms race
CLO5	Explore the jet age, supersonic flight, and contemporary advancements in aviation
0200	technology and sustainability

Content	No. of Hours/ RBT levels
Module 1	
EARLY PIONEERS OF FLIGHT: The pre-history of aviation and early	
dreams of flight.	08 Hours/ L3
The contributions of inventors and pioneers like Leonardo da Vinci, the	
Montgolfier brothers, and Sir George Cayley.	
The development of balloons and gliders in the 18th and 19th centuries	
Module 2	
THE WRIGHT BROTHERS AND THE BIRTH OF POWERED	
FLIGHT: The Wright brothers' background and their journey to Kitty Hawk.	08 Hours/ L3
The principles of controlled powered flight.	
The significance of the Wright brothers' first powered, controlled, sustained	
flight in 1903.	
Module 3	
THE GOLDEN AGE OF AVIATION: The rapid advancements in aviation	
technology during the early 20th century.	

144
The impact of World War I on aviation development.	08 Hours / L3
The era of aviation pioneers like Charles Lindbergh and Amelia Earhart.	
The growth of commercial aviation and the birth of major airlines.	
Module 4	
AVIATION DURING WORLD WAR II AND THE COLD WAR: The	10 Hours / L3
role of aviation during World War II, including the development of fighter	
planes and bombers.	
The Cold War-era arms race and the development of military aircraft.	
The space race and the early days of human spaceflight.	
Module 5	
MODERN AVIATION AND FUTURE TRENDS: The jet age and the	
introduction of commercial jetliners.	08 Hours/ L3
The development of supersonic and hypersonic aircraft.	00110013/125
The impact of technology on aviation, including automation, navigation	
systems, and air traffic control.	
Environmental challenges and the future of sustainable aviation.	

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO64B.1	Gain an understanding of the contributions of historical figures and the evolution of ideas leading to the development of aviation
CO64B.2	Appreciate the significance of the Wright brothers' historic flight and their pioneering contributions to aviation
CO64B.3	Recognize the achievements of aviation pioneers like Charles Lindbergh and the growth of commercial aviation
CO64B.4	Understand the critical role of aviation in global conflicts and the transition into the Cold War era.
CO64B.5	Gain insights into modern aviation technology, environmental challenges, and emerging trends shaping the future of flight

Textbooks:

- 1. James Tobin's "To Conquer the Air: The Wright Brothers and the Great Race for Flight", Free Press, 2003
- 2. Garvey, William and David Fisher, The Age of Flight A History of America's Pioneering Airline, Pace Communications, Inc., 2002
- 3. Tom Lewis, Empire of the Air: The Men Who Made Radio, 2021 by Three Hills **Reference books:**

145

1. Jay Spenser. The Airplane: How Ideas Gave Us Wings, Harper Collins, 2009

2. Steven Gaines, The Sky's the Limit: Passion and Property in Manhattan, Non-fiction, 2005 Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks				
	CIE Test-1						
CIE	CIE Test-2		50				
	CIE Test-3		20				
	Quizzes /Assignment	10					
SEE	Semester End Examination	50	50				
	Grand Total						

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	CO/PO Mapping													
CO/PO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO64B.1	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO64B.2	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO64B.3	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO64B.4	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO64B.5														
Average	2	2											2	

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

146

SEMESTER- VI OPEN ELECTIVE COURSE-1

COURSE: AIRPORT PLANNING & MANAGEMENT

Course Code	22ANE64C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Airport Planning and Management by making them to learn typical operations of airport operations, economic, political and social role of airports and its management.

CLO1	To gain knowledge of the typical operations of airports from a management perspective
CLO2	To provide insights of economic, political and social role of airports
CLO3	Acquire the knowledge of airport operations
CLO4	Acquire the knowledge airport financial management
CLO5	Provide insights into the operational delay and capacity management

Content	No. of
	Hours/
	RBT levels
Module 1	
AIRPORTS AND AIRPORT SYSTEMS: Introduction: Airport management	08
on an international level; The national plan of integrated airport systems; The	Hours/ L4
nation's airport system plan; The rules that govern airport management;	
Organizations that influence airport regulatory policies; A historical and	
legislative perspective: Introduction the formative period of aviation and	
airports, Airport growth: World War-II and the postwar period airport	
modernization: The early jet age.	
Module 2	
COMPONENTS OF THE AIRPORT: The components of an airport, the	
airfield. Navigational aids (NAVAIDS) located on airfields; Air traffic control	
and surveillance facilities located on the airfield; Weather reporting facilities	08 Hours/
located on airfields; Security infrastructure on airfields; Airspace and air traffic	L5
control: Brief history of air traffic control; The basics of air traffic control;	_
Current and future enhancements to air traffic control; Airport terminals and	
ground access: The historical development of	
airport terminals; Components of the airport terminal; Airport ground access	

147

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 3 AIRPORT OPERATIONS AND FINANCIAL MANAGEMENT: Airport operations management: Introduction, pavement management, aircraft rescue and firefighting (ARFF); Snow and ice control, safety inspection programs. Bird and wildlife hazard management; Airport security: Security at commercial service airports, security at general aviation airports; the future of airport security	08 Hours/ L3
Module 4 AIRPORT FINANCIAL MANAGEMENT: Airport financial accounting, revenue strategies at commercial airports, pricing of airport facilities and services, variation in the sources of operating revenues, rise in airport financial burdens, airport funding, grant programs, airport financing, private investment sale of the airport.	10 Hours/L3
Module 5 AIRPORT CAPACITY AND DELAY: Defining capacity, factors affecting capacity and delay, estimating capacity, analytical estimates of delay: The queuing diagram; The future of airport management: Introduction, restructuring of commercial air carriers, new large aircraft and small aircraft transportation systems. restructuring of commercial air carriers, new large aircraft and small aircraft transportation systems.	08 Hours/ L5

CO604C.1	Analyse the historical, legislative, and regulatory frameworks of airport management on both national and international levels	L4
CO64C.2	Appraise the key components of airport infrastructure, including airfield	
	navigational aids, air traffic control, weather reporting facilities, and	
	security measures etc	L5
CO64C.3	Apply the airport operations effectively, including payement	
	management aircraft rescue and firefighting snow and ice control	
	indiagement, and a static rescue and mengining, show and recebilitor,	
	safety inspections, and wildlife hazard management, for ensuring	
	compliance with security protocols in airports	L3
GOLLGA		
CO64C.4	Apply financial management principles to airport operations, including	
	financial accounting, revenue generation strategies, pricing of facilities	
	and services, and understanding various funding and investment	
	machanisms to ansure sustainable simpart financial health	τ2
	mechanisms to ensure sustainable airport financial nearth.	L3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology – R.R. Nagar, Bengaluru - 560 098

CO64C.5 Estimate airport capacity and delays using analytical methods, factors	
influencing capacity and delay, including the impact of new aircraft	
technologies and the restructuring of commercial air carriers.	L5

Textbooks:

1.Alexander T Wells, Ed. D Seth Young 'Airport planning and Management' McGraw-Hill Education 6th Edition, 2011.

Reference books:

1. Norman J. Ashford, H. P. Martin Stanton, Clifton A. Moore, Pierre Coutu "Airport Operations", McGraw Hill 3rd Edition, 2013.

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand '	Total		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO604C.1	3	3	1	1	-	1	1	1	-	-	-	1	1	1
CO64C.2	3	3	1	1	-	1	1	1	-	-	-	1	1	1
CO64C.3	3	3	1	1	-	1	1	1	-	-	-	1	1	1
CO64C.4	3	3	1	1	-	1	1	1	-	-	-	1	1	1
CO64C.5	3	3	1	1	-	1	1	1	-	-	-	1	1	1
Average	3	3	1	1	_	1	1	1	-	_	-	1	1	1

Low-1: Medium-2: High-3

SEMESTER- VI OPEN ELECTIVE 1

COURSE: INTRODUCTION TO FLIGHT SIMULATOR

Course Code	22ANE64D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives:

CLO1	Understand the basic principle of working of flight components
CLO2	Remember the names of components and their functions
CLO3	Think to simulate a flight

Content	No. of Hours/ RBT levels
Module 1	
Historical Perspectives, The case for simulation, Engineering Flight Simulation, The changing role of simulation,	08 Hours/ L4
Module 2	
The organization of flight simulator, Equation of Motion, Aerodynamic model, Engine Model, Engine model, data acquisition model, Gear Model, weather	
model, Visual System, Sound System, Motion System, Controls, Instrument Display, Navigation Systems, Maintenance	08 Hours/ L5
Module 3	
Principles of Flight Modeling, Newtonian Mechanics, Differential Equations,	08
Numerical Integration, Real-time computing, Flight Data	Hours/ L3
Module 4	
The atmosphere, forces, moments, Axes System, Quaternions, Equations of	
Motions, propulsion-Piston Engine, Jet Engine, the landing gear	10
	Hours/L3
Module 5	20
Simulation of flight control systems, the Laplace transform, PID control systems,	U8
Trimming, Aircraft Displays, Attitude Indicator, Altimeter, Airspeed Indicator,	Hours/ L5
compass card, Automatic Direction Finding (ADF), VHF omnidirectional	
Range(VOR), Distance Measuring Equipment(DME),Instrument Landing	
Systems(ILS), GPS, Inertial Navigation System	

CO64D.1	Apply the basic principle of working of flight components	L4
CO64D.2	Practise the names of components and their functions 3. Simulate a flight	L5

Textbooks

- 1. Principles of Flight Simulation by David Allerton, Wiley Publisher
- 2. Flight Dynamics, Simulation, and Control by Ranjan Vepa, CRC press

Reference Books

1. Flight Simulation by JM Rolfe and K J Staples, Cambridge University Press In-flight Simulation-theory and Application by Edwin A. Kidd, Gifford Bull, Robert P. Harper

Scheme of Examination: Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module. Continuous Internal Evaluation (CIE):**

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand	Total	•	100

CO/PO Mapping														
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	60d	PO10	P011	PO12	PSO1	PSO2
CO64D.1	3	3	1	1	-	1	1	1	-	-	-	1	1	1
CO64D.2	3	3	1	1	-	1	1	1	-	-	-	1	1	1
Average	3	3	1	1	-	1	1	1	-	-	-	1	1	1

Low-1: Medium-2: High-3

Head of the Department

SEMESTER – VI ABILITY ENHANCEMENT COURSE- III

COURSE: SYSTEMS ENGINEERING FOR AERONAUTICAL ENGINEERS

22ANE67A	CIE Marks	50
1:0:0	SEE Marks	50
1	Examination Hours	03
	22ANE67A 1:0:0 1	22ANE67ACIE Marks1:0:0SEE Marks1Examination Hours

Pre-requisite:

CO1	Understand the Life Cycle of Systems.
CO2	Explain the role of Stake holders and their needs in organizational systems.
CO3	Develop and Document the knowledge base for effective systems engineering processes.
CO4	Apply available tools, methods and technologies to support complex high technology systems.
CO5	Create the frameworks for quality processes to ensure high reliability of systems.

Content	No. of Hours/ RBT levels
Module 1	
System Engineering and the World of Systems: What is System Engineering?	
Origins of System Engineering, Examples of Systems Requiring Systems	
Engineering, System Engineering viewpoint, Systems Engineering as a	
Profession, The power of Systems Engineering, problems. Structure of	08 Hours/I 2
Complex Systems: System building blocks and interfaces, Hierarchy of	00 110015/ 122
Complex systems, System building blocks, The system environment, Interfaces	
and Interactions.	
The System Development Process: Systems Engineering through the system Life	
Cycle, Evolutionary Characteristics of the development process, the system engineering	
method, Testing throughout system development, problems. Introduction to V Model,	
Model Based Systems Engineering.	
Module 2	
Systems Engineering Management: Managing systems development and risks,	
Work breakdown structure (WBS), System Engineering Management Plan	
(SEMP), Risk Management, Organization of Systems Engineering,	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Identify the system: stakeholder identification and management, boundary	08 Hours/ L3
diagram and context diagram, affinity diagram, converging and diverging view-	
point analysis, functional analysis, Functional flow diagram.	
Requirement Management: Holistic Requirement Model: Operational	
Requirement Systems Requirements, Functional Requirements, Non -Functional	
Performance requirements, Non-Functional Implementation requirements.	
System Textual analysis, Writing requirements.	
Requirement Analysis: Requirement Uncertainty, Failure Model Effect	
Analysis, Risks and Mitigation plan.	
Module 3	
Concept Definition and Selection: Selecting the system concept, Concept	
selection, Concept validation, System Development planning, System Functional	
Specifications. Functional Means Analysis, Analytical Hierarchy Process. Pugh	
Matrix. P-Diagram and Design of Experiment	08 Hours/ L3
Advanced Development: Reducing program risks, functional Safety risks, Risk reduction, Prototype development, Development testing, Introduction to Safety Critical System Design – SAE ARP 4754, RTCA DO-178 Standards, problems,	
Module 4	
Engineering Design: Implementing the System Building blocks, requirements	
analysis, Requirement flow at subsystem and component level, Functional	
breakdown, Detailed design - Functional analysis and design, Component design,	
Design validation, Configuration Management, problems.	08 Hours/L2
SystemVerification & Validation: Verification & Validation, Methods of verification, Verify by Design, Verify by numerical assessment, Verify by component testing, Verify by Integration testing, Verify by System testing.	
Module 5	
Production: Introduction to DFX (DFM, DFR, DFC, DFT etc), Systems Engineering	
in the factory, Engineering for production, Transition from development to production,	08 Hours/L2
Production operations, Acquiring a production knowledge base, problems.	

CO67A.1	Understand the Life Cycle of Systems.
CO67A.2	Explain the role of Stake holders and their needs in organizational systems.
CO67A.3	Develop and Document the knowledge base for effective systems engineering processes.
CO67A.4	Apply available tools, methods and technologies to support complex high technology systems.

CO67A.5	Create the frameworks for quality processes to ensure high reliability of
	systems.

Ref	erence Books:									
1.	Systems Engineering – Principles and Practice, Alexander Kossoaikoff, William N									
	Sweet, 2012,									
	John Wiley & Sons, Inc, ISBN: 978-81-265-2453-2									
2.	Handbook of Systems Engineering and Management, Andrew P. Sage, William B.									
	Rouse, 1999,									
	John Wiley & Sons, Inc., ISBN 0-471-15405-9									
3.	General System Theory: Foundation, Development, Applications, Ludwig von									
	Bertalanffy, 1973,									
	Penguin University Books, ISBN: 0140600043, 9780140600049.									
4.	Systems Engineering and Analysis, Blanchard, B., and Fabrycky, W., 5th edition,									
	2010,									
	Prentice									
	Hall, Saddle River, NJ, USA									

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	Grand Total	(100
		V	j.v.Z

	CO-PO mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										U	1	4
CO67A.1	1	-	-	-	-	1	-	-	-	-	-	1
CO67A.2	-	2	3	-	1	-	-	1	-	-	2	-
CO67A.3	-	3	-	-	-	2	2	1	-	3	2	-
CO67A.4	-	-	2	1	I	I	-	-	I	-	I	-
CO67A.5	1	1	-	2	-	1	2	-	3	-	-	-

High-3: Medium-2: Low-1

SEMESTER – VI ABILITY ENHANCEMENT COURSE

COURSE: VIRTUAL AIRCRAFT SIMULATION

Course Code	22ANE67B	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Remember the terminologies of virtual aircraft simulation
CO2	Understand the virtual aircraft simulation environment and settings Implement the skills of virtual flying

Content	No. of Hours/ RBT levels
Module 1 Introduction to virtual Aviation, Aviation rules and Organization	08 Hours/ L2
Module 2 Air Traffic Control, Radio Communication from Pilot	08 Hours/ L2
Module 3 Flight Mode Annunciator mode English, Flight Instruments and their working principles	08 Hours/ L2

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 4 Flight Instrument Essentials, Aviation Meteorology	08 Hours/ L2
Module 5 Practice of Flight Simulator X installation and Settings	08 Hours/ L2

CO67B.1	Use the settings and controls of virtual aircraft simulation			
CO67B.2	Plan the new flying path for a specific situation			
CO67B.3 Fly an aircraft virtually				

Suggested Learning Resources:

Books

- 1. Flight Simulation Virtual Environments in Aviation By Alfred T. Lee, ISBN 9781138246195 Published September 9, 2016 by Routledge
- 2. Principles of Flight Simulation, David Allerton, ISBN: 978-0-470-75436-8

Web links and Video Lectures (e-Resources):

- https://www.flightsimulator.com/
- <u>https://www.youtube.com/watch?v=EOeDTr1x3XI</u>

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks. Typical Evaluation pattern for regular courses is shown in Table 1

Typical Evaluation pattern for regular courses is shown in Table 1.

 Table 1: Distribution of weightage for CIE & SEE of Regular courses

Component	Marks	Total Marks
	4	Jun -
	Hea Dept. of Global R.R. Na	d of the Department Aeronautical Engineering Academy of Technology 19ar, Bengaluru - 560 098.

	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

CO-PO mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO67B.1	1	-	-	-	-	1	-	-	-	-	-	1
CO67B.2	-	2	3	-	1	-	-	1	-	-	2	-
CO67B.3	-	3	-	-	-	2	2	1	-	3	2	-
Average	1	3	3		1	2	2	1		3	2	1

SEMESTER – VI ABILITY ENHANCEMENT COURSE- III

COURSE: INTRODUCTION TO SWARM DRONE

Course Code	22ANE67C	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	03

Pre-requisite:

CO1	Understand what is Swarm Drone	
CO2	Learn the construction of Swarm	
CO3	Acquire skill of assembly and flying swarm	D
		1

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Content	No. of Hours/ RBT levels
Module 1	
Introduction of swarm or fleet of Unmanned Aerial Vehicles (UAVs), Classification,	08 Hours/ L2
Fully autonomous, semiautonomous, single layered, multi-layered	
Module 2	
Vertically hover, take-off, and land (VTOL), remote control operations, or	08 Hours/ L2
autonomously by using processors deployed on the drones, Military and Civil	
Application, Innovative Research and commercial application of Swarm	
Module 3	
Application Areas, Security, Survey, Monitoring, and Surveillance, Leisure Pursuit,	08 Hours/ L2
Disaster Management, Environmental Mapping, Search and Rescue (S&R)	
Module 4	
Description of Sensors, Existing Control Approaches, Autonomous Swarms	08 Hours/ L2
Module 5	
Battery Swapping/Recharging, Surveillance Systems, Swarm Design, Management,	08 Hours/ L2
and Optimization	

CO67C.1	Apply the concept of swarm drone design
CO67C.2	Develop swarm of drone
CO67C.3	Test fly the drone

Books

- 1. UAV Swarm Networks: Models, Protocols, and Systems, Edited By Fei Hu, Dong Xiu Ou, Xin-lin Huang, ISBN 9780367519988
- 2. Swarm Engineering, https://spie.org/news/swarm-engineering?SSO=1

Web links and Video Lectures (e-Resources):

- https://www.coursera.org/learn/robotics-flight
- https://www.geopoliticalmonitor.com/warfare-evolved-drone-swarms/
- https://www.forbes.com/sites/davidhambling/2021/03/01/what-are-drone-swarms-and-whydoes-everyone-suddenly-want-one/

Scheme of Examination:

Semester End Examination (SEE):

Head of the Department

Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098 **SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50.** There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz /AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

CO-PO mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO67C.1	1	-	-	-	-	1	-	-	-	-	-	1
CO67C.2	-	2	3	-	1	-	-	1	-	-	2	-
CO67C.3	-	3	-	-	-	2	2	1	-	3	2	-
Average	1	3	3	2	1	2	2	1	3	3	2	1

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER – VI ABILITY ENHANCEMENT COURSE- III

COURSE: AI AND ML FOR AEROSPACE APPLICATIONS

Course Code	22ANE67D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre-requisite: Nil

Course objectives: This course will enable students to

CLO1	Understand the basics of Artificial Intelligence and Machine Learning
CLO2	Acquire the knowledge of the foundations of AI and AL
CLO3	Gather the information on its different algorithms and their applications in
	Aerospace Engineering

Content	No. of Hours/RBT levels			
Module-1 Introduction: Data Science, AI & ML, Scientific Method, Modelling Concepts CRISP-DM methods, Programming: Commands and Syntax, Packages and Libraries, Introduction to Data Types, Data Structures in R - Vectors, Matrices, Arrays, Lists, Factors, Data Frames, Importing and Exporting Data.	10 Hours/L3			
Matrices, Arrays, Lists, Factors, Data Frames, Importing and Exporting Data, Control structures and Functions Module-2 Descriptive Statistics Data exploration: Qualitative and Quantitative Data, Measure of Central Tendency, Measure of Positions, Measure of Dispersion Anscombe's quartet, Statistical Analysis Initial Data Analysis, Probability				
Module-3 Data Acquisition: Data Quality and Transformation, Handling Text Data, Principles of Big Data, Data Visualization, Sampling and Estimation, Inferential Statistics	10 Hours/L3			

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

Module-4 Linear Regression: Multiple Linear Regression, Non-Linear Regression, Forecasting models, Foundations for ML, Clustering, Naïve Bayes Classifier, K-Nearest Neighbors, Support Vector Machines, Support Vector Machines	10 Hours/L3
Module-5	
Foundations for AI: Application areas, AI Basics (Divide and Conquer	
Greedy, Branch and Bound, Gradient Descent), NN basics	10
(Perceptron and MLP, FFN, Back propagation), Convolution Neural Networks	10 Hours/I 3
Recurrent Neural Networks, Deep Learning	110015/115

CO67D.1	Apply the basics of Artificial Intelligence and Machine Learning
CO67D.2	Use the knowledge of the foundations of AL and AL
CO67D.3	Implement the information on its different algorithms and their applications in Aerospace Engineering

Textbooks:

- 1. The Hundred-Page Machine Learning Book by Andriy Burkov
- 2. Machine Learning by Tom M Mitchell
- 3. Artificial Intelligence: A Modern Approach, 4th US ed. by Stuart Russell and Peter Norvig

Reference books:

- 1. Machine Learning and Data Mining in Aerospace Engineering by Aboul Ella Hassanien
- 2. Applications of Machine Learning by Jitendra Kumar Verma
- 3. Artificial Intelligence and Machine Learning for Business for Non-Engineers by CRC Press

Web links and Video Lectures (e-Resources):

https://nptel.ac.in/courses/106106198

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/Alternate Assessment Tools (AATs) for 10 marks.

Head of the Department

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
	CIE Test-2	40	50
CIF	CIE Test-3		50
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
	100		

Table 1	1:	Distribution	of weightage	for	CIE &	SEE	of Regular	courses

CO/PO	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO67D.1	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO67D.2	3	3	2	2	1	-	-	-	1	1	1	-	1	1
CO67D.3	3	3	2	2	1	-	-	-	1	1	1	-	1	1
Average	3	3	2	2	1	-	-	-	1	1	1	-	1	1

Low-1: Medium-2: High-3

SEMESTER – VI

COURSE: INDIAN KNOWLEDGE SYSTEM

Course Code	22BIKK68	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	0	Examination Hours	03

Pre-requisite: Nil

Course objectives: This course will enable students to

CLO1	To facilitate the students with the concepts of Indian traditional knowledge and to
	make them understand the Importance of roots of knowledge system
CLO2	To make the students understand the traditional knowledge and analyse it and apply
	it to their day-to-day life.

Module-1 Introduction to Indian Knowledge Systems (IKS): Overview, Vedic Corpus Philosophy, Character scope and importance, traditional knowledge vis-a-vi indigenous knowledge, traditional knowledge vs. western knowledge.	No. of Hours/RBT levels
Module-2 Traditional Knowledge in Humanities and Sciences: Lingistics, Number and measurements- Mathematics, Chemistry, Physics, Art, Astronomy, Astrology, Craft and Trade in India and Engineering and Technology	10 Hours/L3
Module-3 Traditional Knowledge in Professional domain: Town planning and architectur Construction, Health, wellness and Psychology-Medicine, Agriculture, Governanc and public administration, United Nations Sustainable development goals.	10 Hours/L3

Reference Books:

1. Introduction to Indian Knowledge System- concepts and applications, B Mahadevan, Vinayak Rajat Bhat, Nagendra Pavana R N, 2022, PHI Learning Private Ltd, ISBN-978-93-91818-21-0

2. Traditional Knowledge System in India, Amit Jha, 2009, Atlantic Publishers and Distributors (P) Ltd., ISBN13: 978-8126912230,

3. Knowledge Traditions and Practices of India, Kapil Kapoor, Avadesh Kumar Singh, Vol. 1, 2005, DK Print World (P) Ltd., ISBN 81-246-0334,

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO609.1	Provide an overview of the concept of the Indian Knowledge System and its importance
CO609.2	Appreciate the need and importance of protecting traditional knowledge.
CO609.3	Recognize the relevance of Traditional knowledge in different domains.
CO609.4	Establish the significance of Indian Knowledge systems in the contemporary world

Scheme of Examination:

Semester End Examination (SEE):

SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour.

Continuous Internal Evaluation (CIE):

Head of the Department

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests.

Typical Evaluation pattern for regular courses is shown in Table 2.

	Component	Marks	Total Marks	
	CIE Test-1	40	50	
CIE	CIE Test-2	40		
	CIE Test-3	40		
	Assignments	10		
SEE	Semester End Examination	50	50	
	Grand Total		100	
	4.			

 Table 2: Distribution of weightage for CIE & SEE of Regular courses

CO/PO	PO6
CO 1	3
CO 2	3
CO 3	3
CO 4	3
Average	3

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER -VI

COURSE: UNIVERSAL HUMAN VALUES

Course Code	21UHV57	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	0	Examination Hours	03

Course Objectives:

CLO1	To create an awareness on Engineering Ethics and Human Values.
CLO2	To understand social responsibility of an engineer.
CLO3	To appreciate ethical dilemma while discharging duties in professional life.

Content	No. of Hours
Module 1 INTRODUCTION TO VALUE EDUCATION: Value Education, Definition, Concept and Need for Value Education. The Content and Process of Value Education. Basic Guidelines for Value Education. Self-exploration as a means of Value Education. Happiness and Prosperity as parts of Value Education.	05 Hours
Module 2 HARMONY IN THE HUMAN BEING: Human Being is more than just the Body. Harmony of the Self ('1') with the Body. Understanding Myself as Co-existence of the Self and the Body. Understanding Needs of the Self and the needs of the Body. Understanding the activities in the Self and the activities in the Body.	05 Hours
Module 3 HARMONY IN THE FAMILY AND SOCIETY AND HARMONY IN THE NATURE: Family as a basic unit of Human Interaction and Values in Relationships. The Basics for Respect and today's Crisis: Affection, e, Guidance, Reverence, Glory, Gratitude and Love. Comprehensive Human Goal: The Five Dimensions of Human Endeavour. Harmony in Nature: The Four Orders in Nature. The Holistic Perception of Harmony in Existence.	05 Hours
Module 4 SOCIAL ETHICS: The Basics for Ethical Human Conduct. Defects in Ethical Human Conduct. Holistic Alternative and Universal Order. Universal Human Order and Ethical Conduct. Human Rights violation and Social Disparities.	05 Hours

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 5	
PROFESSIONAL ETHICS: Value based Life and Profession. Pr	ofessional Ethics
and Right Understanding. Competence in Professional Ethics. Issue	es in Professional 05 Hours
Ethics The Current Scenario. Vision for Holistic Technologies, Pr	oduction System
and Management Models.	

CO57.1	Understand the significance of value inputs in a classroom and start applying
	them in their life and profession
CO57.2	Distinguish between values and skills, happiness and accumulation of physical facilities, the
	Self and the Body, Intention and Competence of an individual, etc.
CO57.3	Understand the role of a human being in ensuring harmony in society and nature.
CO57.4	Distinguish between ethical and unethical practices and start working out the
	strategy to actualize a harmonious environment wherever they work.

Textbooks:

- 1. A.N Tripathy, New Age International Publishers, 2003.
- 2. Bajpai. B. L, New Royal Book Co, Lucknow, Reprinted, 2004
- 3. Bertrand Russell Human Society in Ethics & Politics

Reference Books:

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. Corliss Lamont, Philosophy of Humanism Gaur. R.R., Sangal. R, Bagari G.P, A Foundation Course in Value Education, Excel Books, 2009.
- Gaur. R.R., Sangal R, Bagaria G.P, Teachers Manual, Excel Books, 2009.
 I.C. Sharma, Ethical Philosophy of India, Nagin & co, Julundhar William Lilly-Introduction to Ethics -Allied Publisher

Scheme of Examination:

There is no Semester End Examination for this course. The assessment is based on Continuous Internal Evaluation only.

Continuous Internal Evaluation (CIE):

CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and two tests. Two quizzes are to be conducted and each quiz is evaluated for 5 marks adding up to 10 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. Typical Evaluation pattern for this course is shown in Table 1.

of the Department Heak

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2	40	100
	Quiz 1/AAT	10	
	Quiz 2/AAT		
Grand To	otal		100

Table 1: Distribution of weightage for CIE

CO/PO	CO/PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO57.1	-	-	-	-	-	2	3	3	3	3	-	-	-	-
CO57.2	-	-	-	-	-	2	3	3	3	3	-	-	-	-
CO57.3	-	-	-	-	-	2	3	3	3	3	-	-	-	-
CO57.4	-	-	-	-	-	2	3	3	3	3	-	-	-	_

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

VII SEMESTER

SEMESTER VII

COURSE: AVIONICS AND SYSTEMS

Course Code	22ANE71	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Pre-requisite: NIL

Course Objectives: To enable students to apply the knowledge of Avionics in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To know about the basics of avionics and its need for civil and military aircrafts
CLO2	To impart knowledge about the avionic architecture and various avionics data buses
CLO3	Knowledge on various avionics subsystems
CLO4	Learn about different navigation systems
CLO5	Learn about air data systems and auto pilot

	No. of
Content	Hours/RBT
	levels
Module 1	
Introduction to Avionics Buses: Avionics Bus Architecture-Digital Data Buses,	
Fibre Optic Buses.	08 Hours/L2
Module 2	
Flight Sensors and Displays : Air Data Sensing, Air Data Computer, Magnetic	
Sensing - Magnetic Heading Reference System (MHRS), Inertial Sensing, Radar	
Altimeter (RADALT), Doppler Radar, Weather Radar - Cathode Ray Tube (CRT),	08 Hours/L2
Active-Matrix Liquid Crystal Display (AMLCD), Head Down Display (HDD), Head	
Up Display (HUD), Helmet Mounted Display (HMD), Integrated Standby	
Instrument System (ISIS). Direct voice input (DVI), Touch Screen, HOTAS.	
Module 3	
Digital Electronics & Antennas: Introduction to VLSI, Frequency and its types,	
Antenna-types, radiation pattern, voltage and current distribution, polarization and its	08 Hours/L2
application in navigation and communication.	
Module 4	
	08 Hours/L2
Communication and Automatic Flight Control: Satellite Communication, Terrain	
communication, Air Traffic Control (ATC) Transponder, Traffic Collision &	
Avoidance System (TCAS), Identification of Friend & Foe (IFF). Emergency locator	
transmitters Longitudinal, Lateral & Direction Autopilot.	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

Module 5 Navigation: Automatic Direction Finding, Very High Frequency Omni-Range (VOR), Distance Measuring Equipment (DME), Tactical Air Navigation (TACAN), VORTAC (VOR+TACAN), Hyperbolic navigation, Satellite Navigation System-Global Positioning System (GPS), Differential GPS, Instrument Landing System (ILS), Transponder Landing System (TLS), Microwave Landing System (MLS), Laser based landing and RF based landing system, Astronavigation.

LIST OF EXPERIMENTS

- 1. Determination of velocity and range of the target using radar.
- 2. Estimation of RPM and time period of oscillation using radar.
- 3. Display the orientation of the control surface & change the orientation of control surface to stabilize the aircraft.
- 4. Sense the temperature and pressure of cabin and provide alarm during emergency.
- 5. Configuration and Data transfer using MIL-STD-1553.
- 6. Configuration and Data transfer using ARINC 429.
- 7. Configuration and Data transfer using AFDX.
- 8. Perform on board communication using satellite communication.
- 9. Determination of aircraft attitude using Inertial navigation system.
- 10. Demonstrate the application of GPS system.
- 11. Estimation of distance or altitude measurement of the aircraft.
- 12. Study of different types of Antennas.

COURSE OUTCOMES: Upon completion of this course, student will be able to:

CO71.1	Describe the avionics buses and their application in aircraft.
CO71.2	Understand modern Aviation sensors and display system.
CO71.3	Familiarize about antenna technologies used for aviation
CO71.4	Describe about the different communication and automatic flight control systems
CO71.5	Identify and understand the use of navigation

Textbooks:

1.Albert Helfrick.D., "Principles of Avionics", Avionics Communications Inc., 2004. 2.Collinson.R.P.G. "Introduction to Avionics", Chapman and Hall, 1996.

Reference books:

1. Middleton, D.H., Ed., "Avionics systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1989.

2. Pallet.E.H.J., "Aircraft Instruments and Integrated Systems", Pearsons, Indian edition 2011.

Head of the Department

Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098 3. Spitzer, C.R. "Digital Avionics Systems", Prentice-Hall, Englewood Cliffs, N.J., U.S.A. 1993.

4. Spitzer. C.R. "The Avionics Handbook", CRC Press, 2000.

5. S Nagabhushana and N Prabhu, "Principles of Modern Avionics", I. K. International Pvt Ltd, distributed by Wiley, Edition 2019.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Two Tests are to be conducted for 50 marks each. Marks scored in each test is reduced to 20 and added to test component.

CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and twotests.

Two quizzes are to be conducted and each quiz is evaluated for 5 marks adding up to 10Marks.

	Component	Marks	Total Marks
	CIE Test-1	20	
CIE	CIE Test-2	20	50
	Quiz 1/AAT	05	
	Quiz 2/AAT	05	
SE	Semester End Examination	50	50
E			
	100		
	Total		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO71.1	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO71.2	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO71.3	2	2	1	-	-	-	-	-	-	1	-	1	2	1
CO71.4	2	2	1	-	-	-	-	-	-	1	-	1	2	1

Head of the Department

Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CO71.5	2	3	1	-	-	-	-	-	-	1	-	1	2	1
Average	2	2	1							1		1	2	1

Low-1: Medium-2: High-3

SEMESTER VII

COURSE: COMPUTATIONAL FLUID DYNAMICS

Course Code	22ANE72	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Learning Objectives: Enable students to gain a comprehensive understanding of CFD theory, its mathematical foundations, and practical applications, enabling them to solve complex fluid dynamics problems using computational methods.

CLO1	Understand the Fundamentals of CFD, Derive the Governing Equations,
	Explore Shock Capturing and Shock Fitting methods
CLO2	Classify Partial Differential Equations (PDEs), Analyse their Case Studies
CLO3	Understand Finite Difference Methods, Explore Time and Space Marching,
	Implement Numerical Schemes
CLO4	Recognize Grid Generation Methods, Explore Structured/Unstructured Grids,
	Evaluate Grid Quality and Adaptive Grids:
CLO5	Understand finite volume techniques, applications and their solution schemes

CONTENT	No. of Hrs /RBT Levels
MODULE 1	
INTRODUCTION AND GOVERNING EQUATIONS: CFD ideas to	
understand, CFD Application, Need for high-speed Parallel Computing,	8 Hours
Substantial derivative, Divergence of velocity, Flow models, Continuity	L5
Equation, Momentum Equation, and Energy Equations in various forms.	
Physical Boundary conditions. Shock capturing, Shock fitting.	

MODULE 2					
MATHEMATICAL BEHAVIOUR OF PARTIAL DIFFERENTIAL					
EQUATIONS: Classification of partial differential equations – Cramer Rule,					
Eigenvalue method. Hyperbolic, parabolic, and elliptic form of equations.					
Impact of classification on physical and computational fluid dynamics. Case studies-steady inviscid supersonic flow, unsteady inviscid flow, steady					
				boundary layer flow, unsteady thermal conduction, and steady subsonic	
inviscid flow.					
MODULE 3					
DISCRETIZATION TECHNIQUES: Finite differences methods, and					
difference equations. Explicit and Implicit Approach Errors and stability analysi	So 11				
Time marching and space marching. Reflection boundary condition. Relaxation	8 Hours				
techniques. Successive over relaxation/under relaxation. Second order Lax-	L4				
Wendroff method, mid-point Leap frog method, Alternating Direction Implicit					
(ADI) Method, upwind scheme, numerical viscosity, and artificial viscosity.					
MODULE 4	1				
GRID GENERATION AND ADAPTIVE GRID METHODS: Need for grid					
generation and Body-fitted coordinate system. Structured Grids-essential feature	*				
Structured Grid generation techniques- algebraic and numerical methods.	8 Hours				
Unstructured Grids-essential features. Unstructured Grid generation techniques-	1 5				
Delaunay-Voronoi diagram, Advancing Front Method (AFM). multi-block gride	,L.3				
generation, Surface grid generation, multi-block grid generation, and meshless					
methods. Grid quality, adaptive grids and Adaptive Structured Grid Generation,					
Unstructured adaptive grid Methods.					
MODULE 5					
FINITE VOLUME TECHNIQUES AND APPLICATIONS: Spatial					
discretization- cell centered and cell vertex techniques (overlapping control	8 Hours				
volume, dual control volume). Temporal discretization- Explicit time stepping,	I 3				
and implicit time stepping. Time step calculation.					
Applications: Aspects of numerical dissipation & dispersion. Approximate					
factorization, Flux Vector splitting. Diffusion problem					

	· · ·	
CO72.1	Appraise the concepts of CFD and derive the related Governing Equations.	L5
CO72.2	Classify the PDEs based on their mathematical behavior vis a vis nature of flow	L4
CO72.3	Analyze FDM techniques for Time/Space marching and numerical schemes.	L4

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

CO72.4	Evaluate the Grid generation and utilization techniques used in CFD	L5
CO72.5	Apply Spatial/Temporal discretization in FVM applications.	L3

Textbooks:

- 1. Anderson, J.D., "Computational Fluid Dynamics the basics with applications", McGraw-Hill, 1995.
- 2. Versteeg, H.K. and Malalasekara, W. "Introduction to Computational Fluid Dynamics: The Finite Volume Method". Second Edition (Indian Reprint) Pearson Education.
- Dale A. Anderson, John C. Tannehill, Richard H. Pletcher, Munipalli Ramakanth, Vijaya Shankar, "Computational Fluid Mechanics and Heat Transfer", 4th edition, CRC Press, https://doi.org/10.1201/9781351124027, eBook ISBN9781351124027, 2020

Reference books:

- 1. John F. Wendt, "Computational Fluid Dynamics: An Introduction" third edition, Springer, 2008
- 2. Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, reprint 2017.
- 3. Ferziger, J. H. and Peric, M. Computational Methods for Fluid Dynamics. Third Edition, Springer Verlag, Berlin
- 4. S. C Gupta, "Applied Computational Fluid Dynamics" Publisher-Wiley, 2019 ; ISBN, 8126587571, 9788126587575

Web references/ Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/112/105/112105045/.
- 2. https://nptel.ac.in/courses/112/105/112105254/._

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Head of the Department

Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Table1: Distribution of weightage for C	CIE & SEE of Regular courses
---	------------------------------

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand To	100		

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO72.1	3	3	2	2	1	-	-	-	1	1	-	1	2	2
CO72.2	3	3	2	2	1	-	-	-	1	1	-	1	2	2
CO72.3	3	3	2	2	1	-	-	-	1	1	-	1	2	2
CO72.4	3	3	2	2	1	-	-	-	1	1	I	1	2	2
CO72.5	3	3	2	2	1	-	-	-	1	1	-	1	2	2
Average	3	3	2	2	1	-	-	-	1	1	-	1	2	2

Low-1: Medium-2: High-3

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMSTER VII

Major Project Phase- II

Course Code	22ANEP76	CIE Marks	100
Hours/Week (L: T: P)	0:0:12	SEE Marks	100
No. of Credits	6	Examination Hours	03

CONTENT	No. of Hours/
	RBT levels
CIE procedure for Project Work Phase - II	
a. Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.	
The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates using Rubrics.	
b. Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.	
The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates as per Rubrics covering all Program Outcomes.	
SEE for Project Work Phase - II	
a. Single discipline : Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department	
b. Interdisciplinary: Contribution to the project and the performance of	
each group member shall be assessed individually in semester end	
examination (SEE) conducted separately at the departments to which the	
student/s belong.	

	- · · - · · · · · · · · · · · · · · · ·
	Able to make comprehensive use of the technical knowledge gained from previous
CO76.1	courses
	Able to understand technologies concerned with the project
CO76.2	
	Able to apply project management skills (scheduling work, procuring parts and
	documenting expenditures and working within the confines of a deadline).
CO76.3	
	Able to analyze, develop and demonstrate the proposed work
CO76.4	
	Able to communicate technical information by means of ethical writing and
CO76.5	presentation.

Table 1: Distribution of weightage for CIE of Regular courses

	Component	Marks	Total Marks
	Review-1		
CIE	Review-2	100	100
SEE	Semester End Examination	100	100
Grand Total		·	200

CO/PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO/PO														
CO76.1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO76.2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO76.3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO76.4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO76.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Average	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Low-1: Medium-2: High-3

SEMSTER VII PROFESSIONAL ELECTIVE III

COURSE: AIRCRAFT MAINTENANCE, REPAIR AND OVERHAUL

Course Code	22ANE74A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

COURSE LEARNING OBJECTIVES: To enable students to apply the knowledge of aircraft maintenance, overhaul and repairs in broad domain of aeronautical engineering by making them to learn:

CLOI	Explain about ground handling procedures and precautions, engine starting procedures.
CLO2	Gain thorough understanding about the ground servicing of sub systems in Aircraft and shop
	safety during maintenance
CLO3	Get a clear idea about the FAA airworthiness regulations and the checklist involved in each
	inspection of aircraft
CLO4	About the welding in aircraft structural components & sheet metal repair and
	maintenance
CLO5	Explain about various tools used, terminology and specifications involved in Aircraft
	hardware selection and fluid line fittings.

Content	No. of Hours/
	RBT levels
Module 1 AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT: Mooring,	08 Hours/ L2
jacking, leveling and towing operations - Preparation - Equipment - precautions - Engine starting procedures - Piston engine, turboprops and turbojets - Engine fire extinguishing - Ground power units.	
Module 2	
GROUND SERVICING OF VARIOUS SUB SYSTEMS AND SAFETY	08 Hours/ L2
MAINTENANCE: Air conditioning and pressurization - Oxygen and oil systems -	
Ground units and their maintenance. Shop safety - Environmental cleanliness –	
Precautions	
Module 3	08 Hours/ L2
INSPECTION: Process - Purpose - Types - Inspection intervals - Techniques - Checklist - Special inspection - Publications, bulletins, various manuals - FAR Air worthiness directives - Type certificate Data Sheets - ATA specifications	
Module 4	08 Hours/ L2
WELDING AND REPAIR IN AIRCRAFT STRUCTURAL COMPONENTS:	
Equipment used in welding shop and their maintenance - Ensuring quality welds -	
Welding jigs and fixtures - Soldering and brazing. Inspection of damage -	
Riveted repair design Damage investigation - reverse technology Reliable quality	
Module 5	
AIRCRAFT HARDWARE, MATERIALS, SYSTEMS PROCESSES:	
Hand tools - Precision instruments - Special tools and equipment in an airplane	10 Hours/ L2
maintenance shop - Identification terminology - Specification and correct use of	
various aircraft hardware (i.e. nuts, bolts, rivets, screws etc.) - identification of all	
types of fluid line fittings. Materials, metallic and non-metallic - Plumbing Connector - Cables - Swaging procedures, tests, Advantages of swaging over splicing	Ring
	Heat of the Department

CO74A.1	understand ground handling procedures and precautions, engine starting procedures			
CO74A.2	2 understand about the ground servicing of sub systems in Aircraft and safety			
CO74A.3	J To know about the FAA airworthiness regulations and the checklist involved in each			
	inspection of aircraft			
CO74A.4	Describe welding process sheet metal repair used I aircraft maintenance			
CO74A.5	understand various tools used, terminology and specifications involved in Aircraft			
	handware calenting and fluid line fittings			
	nardware selection and fluid file fluings			

Textbooks:

- 1. Michael J. Kroes, William A. Watkins, Frank Delp, Ronald Sterkenburg, "Aircraft Maintenance and Repair", McGraw-Hill, Seventh Edition, 2013.
- Kinnison H A, "Aviation Maintenance Management", McGraw-Hill, Second Edition, 2013.
- 3. McKinley J L, Bent R D, "Maintenance and Repair of Aerospace Vehicles", Northrop Institute of Technology, McGraw-Hill, 1967.

Reference books:

- 1. Friend, C H, "Aircraft Maintenance Management", Longman, 1992.
- 2. Patankar M S and Taylor J C, "Risk Management and Error Reduction in Aviation Maintence", Ashgate ISBN 0-7546-1941-9, 2004.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
	CIE Test-3	_	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total			100

of the Department Heat Dept. of Aeronautical Engineering **Global Academy of Technology** R.R. Nagar, Bengaluru - 560 098
CO/PO	CO/PO Mapping													
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO74A. 1	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74A. 2	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74A. 3	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74A. 4	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74A. 5	3	2	-	-	-	-	-	-	-	-	-	1	2	-
Average	3	2										1	2	

Low-1: Medium-2: High-3

SEMSTER VII PROFESSIONAL ELECTIVE III

COURSE: WIND TUNNEL TECHNIQUES

Course Code		22ANE74B	CIE Marks	50			
Hours/	Week (L: T: P)	3:0:0	SEE Marks	50			
No. of (Credits	3	Examination Hours	03			
COURS	E LEARNING OBJ	ECTIVES:					
CLO1	Understand the basic of wind tunnel testing.						
CLO2	Understand the types and functions of wind tunnel.						
CLO3	Acquire the knowled	lge on conventional m	neasurement techniques and spec	cial wind tunnel			

Content	No. of Hours/ RBT levels
Module 1 Principles of Model Testing: Buckingham Theorem, Non-dimensional numbers, Scale effect, Geometric Kinematic and Dynamic similarities.	08 Hours/ L2
	Heap of the Department

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Module 2	
Wind Tunnels:	
Classification - Special problems of testing in subsonic, transonic, supersonic and	
hypersonic speed regions – Water tunnels: Advantages, limitations and configuration	08 Hours/ L2
for aeronautical and non-aeronautical applications – Layouts -Sizing, design	
parameters and loss estimation. Model making; Use of CFD in wind tunnel and water	
tunnel design.	
Module 3	
Calibration of Wind Tunnels: Test section speed, Horizontal buoyancy, Flow	08 Hours/ L2
angularities, Flow uniformity & turbulence measurements, Associated	
instrumentation, Calibration of subsonic & supersonic tunnels.	
Module 4	
Conventional Measurement Techniques: Force measurements and measuring	
systems, Multi component internal and external balances, Pressure measurement	08 Hours/ L2
system, Steady and Unsteady Pressure, single and multiple measurements, Velocity	
measurements, Intrusive and Non-intrusive methods, Flow visualization techniques,	
surface flow, oil and tuft, flow field visualization, smoke and other optical and	
nonintrusive techniques.	
Module 5	
Special Wind Tunnel Techniques: Intake tests, store carriage and separation tests,	10 Hours/ L2
Unsteady force and pressure measurements, wind tunnel model design.	

CO74B.1	Apply the principles and procedures for model testing in the wind tunnel.
CO74B.2	Classify the types and functions of wind tunnel.
CO74B.3	Distinguish the conventional measurement techniques and special wind tunnel techniques

Textbooks

- 1. Rae W.H. and Pope. A, "Low Speed Wind Tunnel Testing", John Wiley Publication, 3rd edition, 2010, ISBN-13: 978-8126525683.
- 2. Pope. A and Goin. L, "High Speed Wind Tunnel Testing", John Wiley, 1985.

Reference Books

- 1. E. Radhakrishnan, Instrumentation, Measurements, and Experiments in Fluids, CRC Press, 2007.
- 2. Bradsaw "Experimental Fluid Mechanics", Pergamon Press, 2nd revised edition, 1970, ISBN-13: 9780080069814.
- 3. Short term course on Flow visualization techniques, NAL, 2009.
- 4. Lecture course on Advanced Flow diagnostic techniques, NAL.

NAL-UNI Lecture Series 12:" Experimental Aerodynamics", NAL SP 98 01 April 1998.

Scheme of Examination: Semester End Examination (SEE):

Heat the Department Dept. of Aeronautical Engineering Global Academy of Technology

R.R. Nagar, Bengaluru - 560 098

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand 7	Total		100

CO/PO	CO/PO Mapping													
СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO74B. 1	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74B. 2	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO74B. 3	3	2	-	-	-	-	-	-	-	-	-	1	2	-
Averag e	3	2										1	2	

Head of the Department Dept. of Aeronautical Engineering **Global Academy of Technology** R.R. Nagar, Bengaluru - 560 098

SEMSTER VII PROFESSIONAL ELECTIVE III COURSE: THEORY OF VIBRATION

Course Code	22ANE74C	CIE Marks	50	
Hours/Week (L: T: P)	3:0:0	SEE Marks	50	
No. of Credits	3	Examination Hours	03	

Pre requisite: Aircraft Structures-I,II

Course Learning Objectives: To enable students to apply the knowledge Theory of Vibration in broad domain of aeronautical engineering by making them to learn:

CLO1	Basic concepts of vibrations, types of vibrations.
CLO2	Understand the working principle of vibration measuring instruments.
CLO3	Differentiate types of vibrations - according to dampness and particle motion.
CLO4	Acquire the knowledge of numerical methods for multi-degree freedom systems.
CLO5	To study the aero elastic effects of aircraft wing.

Content	No. of Hours/ RBT levels	
Module 1		
INTRODUCTION: Types of vibrations, S.H.M, principle of super position	08 Hours/	
applied to Simple Harmonic Motions, Fourier theorem and simple problems.	L3	
Module 2		
UNDAMPED FREE VIBRATIONS: Single degree of freedom systems. Undamped free vibration, natural frequency of free vibration, Spring and Mass elements, effect of mass of spring, Compound Pendulum.		
DAMPED FREE VIBRATIONS: Single degree of freedom systems different types of damping, concept of critical damping and its importance study of response of viscous damped systems for cases of under damping critical and over damping, Logarithmic decrement.	,08 Hours/ ,2L3	
Module 3	08 Hours/	
FORCED VIBRATION: Single degree of freedom systems, steady state solution with viscous damping due to harmonic force. Solution by Complex	L3	
184 De	Head of the Departm pt. of Aeronautical Engi	

algebra, reciprocating and rotating unbalance, vibration isolation,	
transmissibility ratio due to harmonic excitation and support motion.	
Module 4	
SYSTEMS WITH TWO DEGREES OF FREEDOM: Introduction, principle modes and Normal modes of vibration, co-ordinate coupling,	08 Hours/
generalized and principal co-ordinates, Free vibration in terms of initial	L3
conditions. Applications: Vehicle suspension, Dynamic vibration absorber	
and Dynamics of reciprocating Engines.	
Module 5	
MULTI DEGREES OF FREEDOM SYSTEMS: Introduction, Influence	
coefficients, Maxwell reciprocal theorem, Dunkerley's equation.	
Orthogonality of principal modes, Method of matrix Iteration-Method of	08 Hours/
determination of all the natural frequencies using sweeping matrix and Orthogonality principle. Holzer's method, Stodola method.	L3

COURSE	OUI	CON	MES:	Upon	comj	pletion	of th	is c	course, student w	ill be able to:
	T T				•					

CO74C.1	Understand the basic concepts of vibrations.
CO74C.2	Formulate the mathematical models for Undamped and damped mechanical vibrations Systems.
CO74C.3	Formulate the mathematical models for forced vibrations Systems
CO74C.4	Predict the frequency response for mechanical vibration systems under loading conditions
CO74C.5	Analyze the multi-degree freedom systems.
Taythooks	

Textbooks:

- Grover. G.K., "Mechanical Vibrations", 7th Edition, Nem Chand Brothers, Roorkee, India, 2003.
- 2. V.P. Singh., "Mechanical Vibrations", DhanpatRai & Company Pvt. Ltd, 2016.

Reference books:

- 1. Thomson W T, 'Theory of Vibration with Application' CBS Publishers, 1990.
- 2. Bisplinghoff R.L., Ashely H and Hogman R.L., "Aeroelasticity", Dover Publication, New York, 1983.
- 3. Leonard Meirovitch, "Elements of Vibration Analysis". McGraw Hill International Edition, 2007.

Head of the Department

Head of the Department Dept, of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand Total			100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO-PO MAPPING

				CO/I	PO M	apping	5							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO74C.1	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO74C.2	3	3	1	-	-	F	-	-	-	-	-	-	3	-
CO74C.3	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO74C.4	3	3	1	-	-	-	-	-	-	-	-	-	3	-
CO74C.5	3	3	1	-	-	-	-	-	-	-	-	-	3	-
Average	3	3	1	-	-	-	-	-	-	-	-	-	3	-

Head of the Department Dept. of Aeronautical Engineering **Global Academy of Technology** R.R. Nagar, Bengaluru - 560 098

SEMSTER VII PROFESSIONAL ELECTIVE III COURSE: CIVIL AVIATION RULES AND REGULATION

Course Code	22ANE74D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Pre requisite: NIL

Course Learning Objectives: To enable students to apply the knowledge of Civial aviation requirements in broad domain of Aeronautical Engineering by making them to learn:

CLO1	knowledge of Indian Aircraft Rules 1937 and related publication
CLO2	knowledge CAR series B and C (MEL, cockpit and emergency check list and
	Defects rectification and analysis)
CLO3	knowledge CAR series E for approval of organizations: in various categories and
	CAR series M.
CLO4	The knowledge CAR145, CAR -21 Type certificate and Noise certificate
CLO5	The knowledge C.A.R. series F airworthiness and continued airworthiness,
	Registration / deregistration of aircraft, Micro light and Hot air balloons,
	Issue/Renewal and Suspension of Special Certificate of Airworthiness

Content	No. of
	Hours/RBT levels
Module 1	
INDIAN AIRCRAFT RULES 1937 AND RELATED PUBLICATIONS:	
Knowledge of aircraft act, 1934, aircraft rules, 1937 as far as they related to airworthiness and safety of aircraft. Knowledge of civil airworthiness requirements, aeronautical information circulars, aeronautical information publications- (relating to airworthiness), advisory circulars & A.M.E. notices (NOTAMS) by DGCA	08 Hours/ L3
Module 2	
C.A.R. SERIES "B "and "C": C.A.R. series "B" Minimum Equipment List (MEL), preparation and use of cockpit check list and emergency check list. C.A.R. series 'C' – Defect recording, reporting, investigation, rectification and analysis	08 Hours/ L3
187 Heal Dept. of	of the Department Aeronautical Engineer

Module 3	
C.A.R. SERIES "E": C.A.R. Series E- approval of organizations: Approval in categories E & G;CAR M- Objective, Definitions, Continuing Airworthiness Requirement.	08 Hours/ L3
Module 4	
C.A.R. SERIES CAR 145 : General, Scope, Terms of Approval, Facility Requirement, Personnel Requirement, Certifying Staff, Safety and Quality policy, maintenance procedures and quality system. CAR -21, Type certificate, Noise certificate.	08 Hours/ L3
Module 5	
C.A.R. SERIES "F ": C.A.R. SERIES "F" Airworthiness and continued airworthiness: Procedure relating to Registration / deregistration of aircraft, , Issue/validation and suspension of Certificate of Airworthiness, Special Flight permits, Airworthiness requirements for Gliders , Design, Manufacture, Registration and Operation of Micro light Aircraft., Requirements for	08 Hours/ L3
manufacture, registration and airworthiness control of hot air balloons, Age of Aircraft to be imported for Scheduled / Non-Scheduled including Charter,	
General Aviation and other Operations, Issue/Renewal and Suspension of Special Certificate of Airworthiness.	

CO74.1	Should be able to have the knowledge of Indian Aircraft Rules 1937 and related
	publication
CO74.2	Should be able to have the knowledge CAR series B and C (MEL, cockpit and
	emergency check list and Defects rectification and analysis)
CO74.3	Should be able to have the knowledge CAR series E for approval of organizations:
	in various categories and CAR series M.
CO74.4	Should be able to have the knowledge CAR145, CAR -21 Type certificate and Noise
	certificate
CO74.5	Should be able to have the knowledge C.A.R. series F airworthiness and continued
	airworthiness, Registration / deregistration of aircraft, Micro light and Hot air
	balloons, Issue/Renewal and Suspension of Special Certificate of Airworthiness
Textboo	ks:

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengalura - 560 098

1. Aircraft manual (India) volume – latest edition, the English book store, 17-l, Connaught circus, New Delhi.

Reference books:

1. Civil aviation requirements with latest amendment (section 2 airworthiness) – published by DGCA, the English book store, 17-l, Connaught circus, New Delhi.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes/ Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1. Table1: Distribution of weightage for CIE& SEE of Regular courses

	Component	Marks	Total
			Marks
	CIE Test-1	40	
CIE	CIE Test-2		50
_	CIE Test-3	_	
_	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

CO/PO Mapping														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO/PO														
CO74.1	3	2	-	-	-	-	-	-	2	2	-	-12	. wy	1
												-	1/-	/

CO74.2	3	2	-	-	-	-	-	-	2	2	-	-	1
CO74.3	3	2	-	-	-	-	-	-	2	2	-	-	1
CO74.4	3	2	-	-	-	-	-	-	2	2	-	-	1
CO74.5	3	2							2	2			1
Average	3	2	-	-	-	-	-	-	2	2	-	-	1

SEMSTER VII OPEN ELECTIVE COURSE- II

COURSE: DRONE TECHNOLOGY

Course Code	22ANE75A	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to apply the knowledge of Introduction to UAV in broad domain of Aeronautical Engineering by making them to learn:

CLO1	To Identify & select different types of drones, drone rules and regulations
CLO2	Select different drone parts and to understand aerodynamics
CLO3	Understand BLDC motors and different type of batteries
CLO4	Understand different sensors and Flight Control System

Content	No. of
	Hours/
	RBT levels
Module 1	
Introduction: Different types of Drones, Nomenclatures, History of aerial drones,	10 Hours
reputation, airframe, Configurations, basic components, current/future uses of	L1, L2, L3
drones. DGCA regulations, Zones, Digital Sky, Type Certification and RPTO	
Module 2	
Air vehicle: Understanding Aerial platforms. Types of drones. Introduction to aerodynamics, Newton's Laws of Motion, Bernoulli's Principle, four forces of Fight, three axes of Fight, how they apply to drone Flight. Drone Configurations,	8 Hours L1, L2, L3
Launch and Recovery Systems	wy .

Module 3 Propulsion system: Introduction to different electric motors like DC, BLDC, servo motors, working, understanding its functioning, speed torque characteristics, degree of freedom in drone. Introduction Electronic Speed Controller. Performing payload calculation, speed control techniques, thrust to weight ratio.	8 Hours L1, L2, L3
Module 4 Battery System: Introduction of different types of batteries used in drone. Understand different specifications and their significance of batteries. Different charging circuits or batteries, battery management system (BMS) and Building Blocks of BMS.	8 Hours L1, L2, L3
Module 5 Sensors: Accelerometers, types, Inertial measurement units, tilt and lidar sensor, gyro sensor. Principle of operation, their roles and characteristics. Introduction to Flight controller system, Auto pilot	8 Hours L1, L2, L3

CO75A.1	Select different types of drones and drone rules and regulations
CO75A.2	Explain the forces acting on Drone during flight
CO75A.3	Identify the Drone electric motor components
CO75A.4	Choose the suitable battery for Drone Propulsion
CO75A.5	Illustrate the different sensors and Flight Control System

Textbooks:

- 5. The Drone Rules, 2021. The Gazette of India: Extraordinary [Part II—Sec. 3(i)].
- 6. John Baichtal "Building Your Own Drones" A Beginner's Guide to Drones, UAVs, and ROVs Que Publishing, ISBN - 9780789755988
- 7. Julio Alberto Mendoza "Drones to Go" A Crash Course for Scientists and Makers, Apress ISBN-978-1-4842-6787-5

Reference books:

- 6. Paul Gerin Fahlstrom, Thomas James Gleason, Introduction to UAV Systems, Wiley Publication John Wiley & Sons, Ltd, 4th Edition 2012.
- 7. Landen Rosen, Unmanned Aerial Vehicle, Alpha Editions, N.Y., 2012
- 8. Valavanis, Kimon P, Unmanned Aerial Vehicles, Springer, 2011.
- 9. Valavanis, K., Vachtsevanos, George J, Unmanned Aerial Vehicles, Springer, 2015.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a praximum of

four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping

	CO/PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO75A. 1	3	-	-	-	-	-	1	1	1	1	-	1	2	-
CO75A. 2	3	-	1	-	-	-	-	-	1	1	-	1	2	-
CO75A. 3	3	-	1	-	-	-	-	-	1	1	-	1	2	-
CO75A. 4	3	-	1	-	-	-	1	-	1	1	-	1	2	-
CO75A. 5	3	-	-	-	-	-	-	-	1	1	-	1	2	-
Average	3		1				1	1	1	1		1	2	

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMSTER VII OPEN ELECTIVE COURSE- II

COURSE: AIR TRAFFIC AND WEATHER

Course Code	ANE23705B	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: This course will enable students to

CLO1	Understand the Air Traffic Control
CLO2	Acquire Knowledge on the weather condition for flight traffic
CLO3	Remember the symbols of ATC for different weather conditions

Content	No. of Hours/RBT levels
Module 1	08 Hours/
The earth's atmosphere, Temperature, Atmospheric Pressure and Altimetry, Wind, moisture, cloud formation, precipitation, Stable and Unstable Air, clouds, Air masses and Fonts.	L2
Module 2	08 Hours/
Turbulence, Icing, Thunderstorm, High Altitude Weather, Arctic weather, Tropical Weather	L2
Module 3 Problems- Traffic, Weather, Congestion, Air traffic flow management, Airport capacity, Traffic Management Overview Basic Traffic Management Techniques and Terms Ground Delay Programs (GDP) Time-based Flow Management (TBFM) Traffic Management Advisor (TMA) Airspace Flow Programs (AFP) Ground Stops (GS) Adaptive Compression (AC) Integrated Collaborative Rerouting (ICR) Delay Tier Information Operational Information System (OIS)	08 Hours/ L2

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology

R.R. Nagar, Bengaluru - 560 098

Module-4 Weather Tools De-icing/Anti-icing Severe Weather Avoidance Plan (SWAP) Routes Preferred Routes Coded Departure Routes (CDR) National Playbook Flow Evaluation Area (FEA)/Flow Constrained Area (FCA), Global air-traffic management	08 Hours/ L2
Module 5 Call signs, Technology, Air Navigation Service providers and Air traffic service providers, Privatization ATC regulations Weather Conditions Worldwide, METAR, Cloud reporting Abbreviation.	08 Hours/ L2

CO75B.1 Implement the knowledge during the Air Traffic Control				
CO75B.2	Analyse the weather condition for flight traffic			
CO75B.3	Apply the symbols of ATC for different weather conditions			

Suggested Learning Resources:

Text Books

- 1. Mastering the Systems: Air Traffic Control and Weather by Richard L. Collins
- 2. Aviation Weather for Pilots and Flight Operation Personnel Gordon Press Publishers

Reference Books

1. New Concepts and Methods in Air Traffic Management by Amedeo R Odoni, Springer 2. Air Traffic Control by Max Mulder, published by InTech

Web links and Video Lectures (e-Resources):

https://www.ll.mit.edu/about/facilities/air-traffic-control-automation-aviation-weatherdecisionhttps://www.ll.mit.edu/about/facilities/air-traffic-control-automationaviation-weather-decision-support-laboratoriessupport-laboratories

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengalura - 560 098.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3	_	
	Quizzes /Assignment	10	
SEE	Semester End Examination	50	50
Grand T	100		

CO/PO	Map	ping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO75B.1	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO75B.2	3	2	-	-	-	-	-	-	-	-	-	1	2	-
CO75B.3	3	2	-	-	-	-	-	-	-	-	-	1	2	-

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098

SEMESTER VII OPEN ELECTIVE COURSE- II

COURSE: SPACE TECHNOLOGIES

Course Code	22ANE75C	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to understand the innovations in space technologies

CLO1	To provide an understanding of space missions, including types and space environment considerations, and to introduce the fundamentals of rocket propulsion
CLO2	To introduce different re-entry techniques, including steep ballistic, orbital, skip, and "double-dip" re-entries, as well as aero-braking and lifting body re-entries
CLO3	To provide a foundation in orbital mechanics, covering two-body motion, orbital elements, ground trace, in-plane orbit changes, transfer maneuver's
CLO4	To explain the dynamics of satellite attitude control, including torque-free axisymmetric rigid body motion, attitude control for spinning and non-spinning spacecraft
CLO5	To introduce the architecture of supporting ground systems and team interfaces for space missions

Content	No. of Hours/ RBT levels
Module 1 Fundamentals of Rocket Propulsion and Trajectories: Space Mission- Types-	
Space environment-launch vehicle selection.; Introduction to rocket propulsion - fundamentals of solid propellant rockets- Fundamentals of liquid propellant rockets - Rocket equation, Two-dimensional trajectories of rockets and missiles -Multistage Rockets -Single stage to orbit- Sounding Rocket -Aerospace plane Gravity turn trajectories-Impact point calculation-Injection conditions-Flight dispersions	10 Hours/L2
Module 2	
Atmospheric Re-entry: Introduction-Steep ballistic re-entry-Ballistic orbital	10
re-entry-Skip re-entry- "Double- Dip" re-entry - Aero-braking - Lifting body	Hours/L2
re-entry	
Module 3	
Fundamentals of Orbital Mechanics, Orbital Maneuver's: Two-body motion-circular, elliptic, hyperbolic, and parabolic orbits-Basic orbital elements-Ground trace. In-Plane orbit changes-Hohmann Transfer-Bi-elliptical transfer-Plane changes- Combined maneuver's Propulsion for maneuvers	10 Hours/L2
Realized and the second se	ind

Module 4 Satellite Attitude Dynamics: Torque free axisymmetric rigid body-Attitude control for spinning spacecraft - Attitude control for non-spinning spacecraft - The Yo-Yo mechanism – Gravity – Gradient Satellite-Dual spin spacecraft- Attitude determination	10 Hours/L2
Module 5Space mission Operations: Supporting ground system architecture and teaminterfaces - Mission phases and core operations- Team responsibilities –Mission diversity – Standard operations practices	10 Hours/L2

CO75C.1	Comprehend various types of space missions, make informed decisions regarding launch vehicle selection, understand the basics of rocket propulsion
CO75C.2	Explain the principles and methods of various atmospheric re-entry techniques, and understand their applications in space missions
CO75C.3	Have a strong grasp of orbital mechanics, be capable of calculating and planning various orbital maneuvers
CO75C.4	Analyze and control the attitude of satellites in different scenarios, understand the dynamics of various satellite configurations
CO75C.5	Proficient in understanding the ground systems and team structures necessary for space missions, recognize the roles and responsibilities of team members

Textbooks:

- 1. Spaceflight Dynamics', W.E. Wiesel, 3rd edition, McGraw-Hill, 2010
- 2. Elements of Space Technology for Aerospace Engineers', Meyer Rudolph X, Academic Press, 1999
- 3. Fundamentals of Space Systems', Vincet L. Pisacane, Oxford University Press, 2005

Reference books:

- 1. 'Rocket Propulsion and Space flight dynamics', Cornelisse JW, Schoyer HFR, and Wakker KF, Pitman, 1984
- 2. Understanding Space: An Introduction to Astronautics', J. Sellers, 2nd edition, McGraw-Hill, 2004
- 3. 'Introduction to Space Flight', Francis J Hale, Prentice-Hall, 1994
- 4. 'Spacecraft Mission Design', Charles D. Brown, AIAA Education Series, 1998

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology R.R. Nagar, Bengaluru - 560 098.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	Grand Total		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping

						(CO/PC) Map	ping					
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO75C.1	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75C.2	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75C.3	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75C.4	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75C.5	3	3	-	-	-	-	-	-	-	-	-	1	2	-
Average	3	3	-	-	-	-	-	-	-	-	-	1	1	-

Head of the Department

SEMESTER VII OPEN ELECTIVE COURSE- II

COURSE: AVIATION AND INTERNET INFRASTRUCTURE

Course Code	22ANE75D	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Course Objectives: To enable students to understand the innovations in space technologies

CLO1	Understand the need for the flight 4.0
CLO2	Gain Knowledge on both aviation and its internet infrastructure
CLO3	Understand the operation and working principle of internet infrastructure

Content	No. of Hours/ RBT levels
Module 1 The Aerospace Sector, Aerospace Transformation through Industry 4.0 technologies, Flight 4.0: The changing Technology Landscape, The Internet: An Introduction	10 Hours/L2
Module 2 Advances in Avionics Platforms: Multicore systems, Emerging trends in Avionics Networking, Internet Infrastructure working principle	10 Hours/L2
Module 3 IoT and Service Oriented Infrastructure for Flight 4.0, Big Data and Data Analytics in Aviation, Ontologies in Aeronautics, TCP/IP, In-Flight Wi-Fi	10 Hours/L2
Module 4 Advances in Software Engineering and Aeronautics, Autonomy and Safety of Unmanned Aircraft Systems	10 Hours/L2
Module 5 Aerospace Engineering Curricular Expansion in Information Systems, Networking, Web services, Cloud Computing	10 Hours/L2

Head of the Department Dept. of Aeronautical Engineering Global Academy of Technology

R.R. Nagar, Bengaluru - 560 098

CO75D.1	Analyse the need for the flight 4.0
CO75D.2	Implement Knowledge on both aviation and its internet infrastructure
CO75D.3	Modify the operation and working principle of internet infrastructure

Suggested Learning Resources:

Text Books

- 1. Advances in Aeronautical Informatics- Technology towards Flight 4.0 by Umut Durak, Springer
- 2. Principles of flight 4.0 by ISBN 9788281070318, 8281070315

Reference Books

1. Aircraft Technology by Melih Cemal Kushan

Web links and Video Lectures (e-Resources):

https://www.coursera.org/lecture/cybersecurity-policy-aviation-internet/l26internethttps://www.coursera.org/lecture/cybersecurity-policy-aviation-internet/l26internet-infrastructure-vCsjainfrastructure-vCsja

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs) for 10 marks.

Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
	CIE Test-1		
CIE	CIE Test-2	40	50
	CIE Test-3		
	Quiz 1/AAT	10	
SEE	Semester End Examination	50	50
	100		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Head of the Department Dept. of Aeronautical Engineering **Global Academy of Technology**

R.R. Nagar, Bengaluru - 560 098

CO/PO Mapping

CO/PO Mapping														
CO/PO	P01	P02	P03	P04	P05	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO75D.1	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75D.2	3	3	-	-	-	-	-	-	-	-	-	1	2	-
CO75D.3	3	3	-	-	-	-	-	-	-	-	-	1	2	-
Average	3	3	-	-	-	-	-	-	-	-	-	1	1	-

Low-1: Medium-2: High-3

SEMESTER -VIII

COURSE: INTERNSHIP+SEMINAR

Course Code	22ANEI83	CIE Marks	100
Hours/Week (L: T: P)	0:0:4	SEE Marks	
No. of Credits	2	Examination Hours	03

Internship:

All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters.

Internship examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

Course Outcomes

	Analyze and review various research papers to identify Aeronautical										
CO86.1	related topic										
	Understand new trends in Aeronautical field having cutting edge										
CO86.2	technologies in the selected topic										
CO86.3	Impart skills in preparing detailed report describing the topic and results										
CO86.4	Able to summarize the industrial Exposure and practices										
	Able to communicate technical information by means of ethical writing and										
CO86.5	presentation.										

Head of the Department Dept. of Aeronautical Engineering **Global Academy of Technology** R.R. Nagar, Bengaluru - 560 098

CIE procedure for Internship:

The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Internship shall be based on the evaluation of Internship report, presentation skill and question and answer session in the ratio 50:25:25.

SEE for Internship:

Contribution to the Internship and the performance of each Student shall be assessed individually in the semester end examination (SEE) conducted at the department. Typical Evaluation pattern for regular courses is shown in Table 1.

	Component	Marks	Total Marks
CIE	Review-2	50	50
SEE	Semester End Examination	50	50
	Grand Total		100

Table 1: Distribution of weightage for CIE & SEE of Regular courses

CO/PO Mapping														
CO/PO	POI	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	1	1	1	3	3	2	2	3	3	3	3	_	3	3
CO2	1	1	1	3	3	2	2	3	3	3	3	_	3	3
CO3	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO4	1	1	1	3	3	2	2	3	3	3	3	-	3	3
CO5	1	1	1	3	3	2	2	3	3	3	3	-	3	3

Head of the Department Dept. of Aeronautical Engineering **Global Academy of Technology** R.R. Nagar, Bengaluru - 560 098