

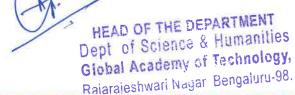
First Year Scheme & Syllabus (2022 Scheme)

SCHEME AND SYLLABUS

Civil Engineering Stream

GLOBAL ACADEMY OF TECHNOLOGY Autonomous institution affiliated to VTU, Belagavi. Raja Rajeshwari Nagar, Bengaluru-560098.

Scheme of Teaching and Examination 2022–23 (Effective from the academic year 2022 – 23)


I SEMESTER B.E. (PHYSICS GROUP) - CV Stream (CV)

				Teaching Hours / Week				E	n			
SI. No		and Course Code	Course title	Offering Department	Teaching Department	Theory Lecture	Tutorial	Practical / Drawing	CIE	SEE	Total	Credits
						L		Р	Marks	Marks	Marks	
1	BSC	22MAT 11	LINEAR ALGEBRA AND CALCULUS	MAT	MAT	3	2	0	50	50	100	4
2	BSC	22PHY12	ENGINEERING PHYSICS (INTEGRATED)	РНҮ	РНҮ	3	0	2	50	50	100	4
3	ESC-1	22MEE13	ELEMENTS OF MECHANICAL ENGINEERING	ME	ME	3	0	0	50	50	100	3
4	ESC	22CIV14	ENGINEERING MECHANICS	CV	CV	2	2	0	50	50	100	3
5	PLC-1	22ISE151	PYTHON PROGRAMMING (INTEGRATED)	ISE	ANY	3	0	2	50	50	100	4
6	AEC	22EGH16	COMMUNICATIVE ENGLISH	HUMANITIES	ANY	1	0	0	50	50	100	1
7	HSMC	22KSK17/ 22KBK17	Samskrutika Kannada / Balake Kannada	HUMANITIES	ANY	1	0	0	50	50	100	1
		0			TOTAL	16	4	4	350	350	700	20

Science Course, ESC- Engineering Science Course, HSMC- Humanity, Social Science and Management course, Emerging Technology Course, PLC – Programming Language Course

A. Ryds Lector Away Dean Academic

Global Academy of Technology, Rajarajoshwarinagar, Bengaluru-98

Scheme of Teaching and Examination 2022–23 (Effective from the academic year 2022 – 23)

I SEMESTER B.E. (CHEMISTRY GROUP) – CV Stream (CV)

						Teac	hing Hours /	Week	Examination			
SI. No			Course title		Offering Teaching T Department Department		Tutorial	Practical / Drawing	CIE	SEE	Total	Credits
						L	т	Р	Marks	Marks	Marks	_
1	BSC	22MAT 11	LINEAR ALGEBRA AND CALCULUS	MAT	MAT	3	2	0	50	50	100	4
2	BSC	22CHE12	ENGINEERING CHEMISTRY (INTEGRATED)	CHE	CHE	3	0	2	50	50	100	4
3	ESC	22MEG13	COMPUTER AIDED ENGINEERING DRAWING	ME	ME	2	0	2	50	50	100	3
4	ESC-1	22CSE14	C PROGRAMMING (INTEGRATED)	CSE	ANY	3	0	2	50	50	100	4
5	ETC -1	22CIV151	WASTE MANAGEMENT	CV	CV	3	0	0	50	50	100	3
6	HSMC	22IDT16	INNOVATION AND DESIGN THINKING	HUMANITIES	ANY	1	0	0	50	50	100	1
7	HSMC	22CIP17	CONSTITUION OF INDIA AND PROFESSIONAL ETHICS	HUMANITIES	ANY	1	0	0	50	50	100	1
	TOTAL					16	2	6	350	350	700	20
			urse, ESC- Engineering Science Cours e, PLC – Programming Language Cou		nity, Social Scie	nce and Mana	agement cour	se, AEC – Abilit	ty Enhance	ment Cou	rse, ET C –	

Scheme of Teaching and Examination 2022–23 (Effective from the academic year 2022 – 23)

II SEMESTER B.E. (PHYSICS GROUP) – CV Stream (CV)

						Teac	ching Hours /	Week	E			
SI. No			Course title	Offering Department	Teaching Department	Theory Lecture	Tutorial	Practical / Drawing	CIE	SEE	Total	Credits
						L	т	Р	Marks	Marks	Marks	
1	BSC	22MAT 21	INTEGRAL CALCULUS AND DIFFERENTIAL EQUATION	MAT	MAT	3	2	0	50	50	100	4
2	BSC	22PHY22	ENGINEERING PHYSICS (INTEGRATED)	РНҮ	РНҮ	3	0	2	50	50	100	4
3	ESC-1	22MEE23	ELEMENTS OF MECHANICAL ENGINEERING	ME	ME	3	0	0	50	50	100	3
4	ESC	22CIV24	ENGINEERING MECHANICS	CV	CV	2	2	0	50	50	100	3
5	PLC-2	22ISE251	PYTHON PROGRAMMING (INTEGRATED)	ISE	ANY	3	0	2	50	50	100	4
6	AEC	22EGH26	COMMUNICATIVE ENGLISH	HUMANITIES	ANY	1	0	0	50	50	100	1
7	HSMC	22KSK27/ 22KBK27	Samskrutika Kannada / Balake Kannada	HUMANITIES	ANY	1	0	0	50	50	100	1
					TOTAL	16	4	4	350	350	700	20
			urse, ESC- Engineering Science Cours se, PLC – Programming Language Cou		nity, Social Scie	nce and Mana	agement cour	rse, AEC – Abilit	ty Enhance	ment Cou	rse, ETC -	-

Scheme of Teaching and Examination 2022–23 (Effective from the academic year 2022 – 23)

II SEMESTER B.E. (CHEMISTRY GROUP) – CV Stream (CV)

						Teac	ching Hours /	Week	E	n		
SI. No			Course title			Theory Lecture	Tutorial	Practical / Drawing	CIE	SEE	Total	Credits
						L	т	Р	Marks	Marks	Marks	
1	BSC	22MAT 21	INTEGRAL CALCULUS AND DIFFERENTIAL EQUATION	MAT	MAT	3	2	0	50	50	100	4
2	BSC	22CHE22	ENGINEERING CHEMISTRY (INTEGRATED)	CHE	CHE	3	0	2	50	50	100	4
3	ESC	22MEG23	COMPUTER AIDED ENGINEERING DRAWING	ME	ME	2	0	2	50	50	100	3
4	ESC-2	22CSE24	C PROGRAMMING (INTEGRATED)	CSE	ANY	3	0	2	50	50	100	4
5	ETC -2	22CIV251	WASTE MANAGEMENT	ME/AE	ME/AE	3	0	0	50	50	100	3
6	HSMC	22IDT26	INNOVATION AND DESIGN THINKING	HUMANITIES	ANY	1	0	0	50	50	100	1
7	HSMC	22CIP27	CONSTITUION OF INDIA AND PROFESSIONAL ETHICS	HUMANITIES	ANY	1	0	0	50	50	100	1
					TOTAL	16	2	6	350	350	700	20
Note Emer	: BSC- Bas ging Tech	ic Science Co nology Cours	urse, ESC- Engineering Science Cours e, PLC – Programming Language Cou	e, HSMC- Huma rse	nity, Social Scier	nce and Mana	igement cour	se, AEC – Abilit	y Enhance	ment Cou	rse, ET C -	

Semester I

Course: Linear Algebra and Calculus

Course Code	22MAT11	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	4	Examination Hours	03

Course Objectives

To enable students to apply the knowledge of Mathematics in various fields of engineering by making them to learn the following:

CLO1	Solution of system of equations and Eigen values					
CLO2	Polar curves, Curvature and Radius of curvature					
CLO3	Partial derivatives and Jacobians					
CLO4	Vector differentiation					

Content	No. of Hours/ RBT levels
Module 1	
Rank of a matrix by elementary row transformations. Eigen values and Eigen vectors. Consistency of linear system of equations. Solution of linear system of equations: Gauss elimination, Gauss Jordan and Gauss-Seidel methods.	10 Hours L2, L3
Module 2	
Successive Differentiation; standard results. Fundamental Theorems: Rolle's theorem, Lagrange mean value theorem, Cauchy's mean value theorem and Taylor's theorem. Expansion of functions: Maclaurin's series.	10 Hours L2, L3
Module 3	
Evaluation of indeterminate forms. Polar Curves: Angle between radius vector and tangent, angle between two curves. Pedal equation. Curvature and Radius of Curvature for Cartesian and polar curves.	10 Hours L2, L3
Module 4	
Function of two or more variables, Partial derivatives, Differentiation of composite functions. Jacobians (direct examples). Taylor's theorem for functions of two variables. Maxima and Minima of functions of two variables.	10 Hours L2, L3
Module 5	
Differentiation of vectors, velocity and acceleration. Scalar and vector point functions. Gradient, directional derivative; divergence and curl, physical interpretation of divergence and curl.	10 Hours L2, L3

Course Outcomes

Upon completion of this course, student will be able to:

CO11.1	Apply knowledge of matrices to test the consistency and solve system of linear equations.
CO11.2	Demonstrate the understanding of fundamental theorems of calculus.
CO11.3	Solve problems related to curvature, maxima & minima and Jacobians.
CO11.4	Compute Gradient, Divergence and Curl of a scalar/vector field.

HEAD OF THE DEPARTMENT Dept of Science & Humanities

Global Academy of Technology,

Rajarajeshwari Nagar Bengaluru 98

Text books:

- 1. Higher Engineering Mathematics, B.S. Grewal, Khanna Publishers, 44th Edition, 2017.
- 2. Higher Engineering Mathematics, B.V. Ramana, Tata McGraw-Hill, 2006

References:

- 1. Advanced Engineering Mathematics, E. Kreyszig, John Wiley & Sons, 10th Edition, 2016.
- 2. Higher Engineering Mathematics, H.K. Dass and Er. Rajnish Verma, S. Chand publishing, 1st edition, 2011.
- 3. A Text Book of Engineering Mathematics, N.P.Bali and Manish Goyal, Laxmi Publications, 6th Edition, 2014.
- 4. Calculus, James Stewart, Cengage Publication, 7th Edition, 2012.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

	Component	Marks	Total Marks	
	CIE Test-1	40		
	CIE Test-2	40	50	
CIE	CIE Test-3	40		
	Assignments	10		
SEE	Semester End Examination	50	50	
	Grand Total		100	

Table 2: Distribution of weightage for CIE & SEE of Regular courses

				CO/P	O Map	ping						-
CO/PO	P01	P02	PO3	P04	PO5	P06	P07	PO8	60d	P010	P011	P012
CO11.1	3	2										3
CO11.2	3	2										3
CO11.3	3	2										3
CO11.4	3	2										3
Average	3	2										3

SEMESTER -I/II

SUBJECT: Engineering Physics (Integrated)

Semester	1/11	CIE Marks	50
Subject Code	22PHY12/22	SEE Marks	50
Hours/Week (L: T: P)	3:0:2	Examination Hours	03

Course Objectives: The course will enable the students to

1	Learn the basic concepts in Physics which are very much essential in understanding and
	solving Engineering related challenges.
2	Make the students gain practical knowledge to correlate with the theoretical studies.
3	Achieve perfectness in experimental skills and ability to develop and fabricate engineering
	and technical equipment.

	Content	No. of Hours/ RBT levels
	Module 1	9 hrs/L3
Elasticity &	Oscillations	
Elasticity		
-	als of elasticity: concept of stress, strain, stress-strain curve, modulii of	
	elation between Y, n & σ . Beams, bending moment(no derivation),	
	for Young's modulus using single cantilever, torsional oscillations,	
	s, numerical problems.	
Oscillations		
Free oscilla	tion: Introduction, SHM, differential equation of SHM, expression for	
force consta	ant in series & parallel combination of springs, numerical problems	
Damped os	cillation: Theory of damped oscillations with examples, numerical	
problems.		
Forced osc	illation: Theory of forced oscillations and resonance, numerical	
problems.		
Pedagogy	Chalk & Talk, multimedia presentation	
	Practical topics: Torsional pendulum, Single cantilever, Spring cons	
	Module 2	8hrs/L3
Quantum m		
	cle dualism, de Broglie hypothesis, de Broglie wavelength of an	
	electron, Heisenberg's uncertainty principle, application of HUP(Non-	
	f electrons inside the nucleus), significance and properties of wave	
	chrodinger's time independent wave equation, eigen functions & eigen	
	particle in one dimensional potential well of infinite height, numerical	
problems.		
Pedagogy	Chalk & Talk, multimedia presentation	
	Practical topics: Wavelength of LEDs	
	Module 3	8hrs/L3
	ptical fibers	
	eraction of radiation with matter, Einstein's coefficients, Requisites and	
	or laser action, He-Ne LASER, application of lasers in measurement of	
	n the atmosphere, numerical problems.	
	ers: Total internal reflection, angle of acceptance and numerical	
	A). Modes of propagation, V number and types of optical fibers.	
HEA	D OF THE DEPARTMENT	
-	of Colonce & Hilliandia	
Globa	I Academ - M Technology,	

Rajarajeshwari ik par borgeturu-98.

Pedagogy	nerical problems. Chalk & Talk, multimedia presentation	
i cuagogy	Practical topics: LASER diffraction, numerical aperture	
	Module 4	01
Electrical n	roperties of solids	8hrs/L3
-		
	ree electron theory: Assumptions of quantum free electron theory,	
	states(qualitative), expression for Fermi energy, Fermi factor & its	
problems.	e dependence, success of quantum free electron theory, numerical	
Physics of s	emiconductors: Fermi level in intrinsic semiconductor, expression for	
	y, numerical problems.	
	Polar and non-polar dielectrics, types of polarization, expression for	
internal fie	ld in solids & liquids, dielectric constant of a dielectric material,	
	s, numerical problems.	
Pedagogy	Chalk & Talk, multimedia presentation	
	Practical topics: Fermi energy, energy gap, dielectric constant	
	Module 5	7 hrs/L2
Physics of N	anoscience & Material characterization	
	anoscience & Material characterization lanoscience: Introduction, Top-down approach, Bottom-up approach,	
Physics of N	lanoscience: Introduction, Top-down approach, Bottom-up approach,	
Physics of N	lanoscience: Introduction, Top-down approach, Bottom-up approach, tates 3D, 2D, 1D & 0D. Synthesis: Ball milling, arc discharge method,	
Physics of N Density of s applications	lanoscience: Introduction, Top-down approach, Bottom-up approach, states 3D, 2D, 1D & 0D. Synthesis: Ball milling, arc discharge method, s.	
Physics of N Density of s applications	lanoscience: Introduction, Top-down approach, Bottom-up approach, states 3D, 2D, 1D & 0D. Synthesis: Ball milling, arc discharge method, s. aracterization: Principle, construction, working of Fourier Transform	
Physics of N Density of s applications Material ch	lanoscience: Introduction, Top-down approach, Bottom-up approach, states 3D, 2D, 1D & 0D. Synthesis: Ball milling, arc discharge method, s. aracterization: Principle, construction, working of Fourier Transform FTIR) spectroscope, Transmission Electron Microscope (TEM),	
Physics of N Density of s applications Material ch Infrared (I	lanoscience: Introduction, Top-down approach, Bottom-up approach, states 3D, 2D, 1D & 0D. Synthesis: Ball milling, arc discharge method, s. aracterization: Principle, construction, working of Fourier Transform FTIR) spectroscope, Transmission Electron Microscope (TEM),	

SL.	Experiments	No. of Hours/
No.		RBT levels
1	Spring constants in series and parallel combination	2 /L3
2	Wavelength of LEDs	2/L3
3	Frequency response in series and parallel LCR circuits	2/L3
4	Energy gap of a semiconductor	2 / L2
5	Acceptance angle and numerical aperture of an optical fiber	2 / L2
6	Rigidity modulus using Torsional pendulum	2/L2
7	Fermi energy of a conductor	2 / L2
8	Dielectric constant of a dielectric material	2 / L3
9	Young's modulus by single cantilever	2 / L3
10	Wavelength of LASER using diffraction grating	2 / L2

Course Outcomes: The students will be able to:

CO1	Apply the concepts of elasticity, oscillations in various applications.		
CO2	Interpret the concepts of quantum mechanics & utilize in LASERs, optical fibers and		
	electrical properties of materials.		
CO3	Illustrate the steps involved in the synthesis & characterization of materials.		

Textbooks:

- 1. Avadhanulu M N, Kshirasagar P G & Arun Murthy TVS, A text book of Engineering Physics, 11th edition, S Chand Ltd, New Delhi(2018).
- 2. Basavaraju S P, A detailed textbook of Engineering Physics, Subhas Publishers (2018).
- 3. Gaur & Gupta, Engineering Physics, Dhanpath Rai publications (2017)

Reference books:

- 3. Arthur Beiser, Shobhit Mahajan, Rai Choudhury S, Concepts of Modern Physics (SIE) | 7th Edition Paperback Tata Mc Graw Hill Edu Pvt. Ltd, New Delhi (2017).
- 4. Pillai S O, Solid State Physics, Multicolour Ed, New Age International publishers (2020).
- 5. David Griffiths, Introduction to Electrodynamics, 4th Ed. Cambridge Univ. Press (2017).
- 6. Laud B B, Lasers & non-linear optics, 3rd Ed., New Age International publishers (2011).
- 7. Engineering Physics lab manual Department of Physics, Global Academy of Technology

HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology, Rajarajeshwari Nagar Bengaluru-98.

SEMESTER – I/II COURSE: Elements of Mechanical Engineering

Course Code	22MEE13/23	CIE Marks	50
Hours/Week (L: T: P)	3:0:0	SEE Marks	50
No. of Credits	3	Examination Hours	03

Overview: The course is intended to be delivered to the I/II semester engineering students of all branches as a basic course. It covers the fundamental concepts and principles of various topics under Mechanical domain involving manufacturing systems, engine systems and advanced manufacturing principles.

Course Objectives: This course enables the students to

CLO1	Learn the fundamental concepts of the manufacturing process
CLO2	Comprehend the basic concepts of Design and Power Transmission
CLO3	Understand the concepts of Internal Combustion engines, Boilers, Turbines and Refrigeration
CLO4	Understand the concepts of Automation and Robotics in Industry
CLO5	Enumerate the knowledge of Materials, Joining process and additive manufacturing

Content	No. of Hours/ RBT levels
Module 1 Primary Manufacturing Processes: Casting, forging, rolling, drawing, extrusion, press	
tool work, plastic moulding and powder metallurgy (Introduction to the process and applications only)	
Joining Processes: Soldering, Brazing and Welding. Definitions. Working principle of Arc Welding, Oxy-Acetylene Welding. Comparison of the Soldering, Brazing and Welding processes	8 Hours L3
Introduction to additive manufacturing: Definitions and stages involved in Additive Manufacturing. Applications of Additive Manufacturing. Demonstration of Additive Manufacturing	
Practice on metal arc welding (running bead)	
Module 2	
Secondary Manufacturing Processes: (Turning, Drilling and Milling)	
Lathe – Construction and Specifications of a Centre Lathe, Operations on Lathe Machine	
- Turning, Facing, Knurling, Thread Cutting, Drilling	
Principle of a Drilling Process, Operations on Drilling Machine - Drilling, Boring, Counter	8 Hours
boring, Countersinking, Reaming	L3
Principle of a Milling Process, Operations on Milling Machine - Plane Milling, End Milling,	
Slot Milling, Angular Milling, Form Milling, Straddle Milling, and Gang Milling.	
Demonstration of handheld and power tools and operations on machine tools, which may	
include machining of simple turning models, Drilling and/or milling.	
Module 3	
Computer Numerical Control (CNC):Introduction, components of CNC, open-loop and	
closed-loop systems, advantages of CNC, CNC Machining Centres and Turning Centres.	8 Hours
Robotics: Robot anatomy, joints and links, common robot configurations. Applications of	L3
Robots in material handling, processing, assembly, and inspection. Demonstration on CNC Machines	
Preparation of simple model on robot configurations	
Module 4	
Introduction to automotive systems: Classification, I.C. Engines parts, Four-stroke Petrol and Four-stroke Diesel Engines, Simple problems on Indicated power, Brake Power and	8 Hours L3

Mechanical Efficiency, Green Fuels (Bio-diesel, CNG), Working principle of Electric and	
Hybrid vehicles.	
Boilers: Introduction to boilers, classification, Working principle of Water Tube and Fire	
Tube Boilers, (No sketch of any Boilers). Layout of Thermal Power Plant.	
Turbines: Classification of turbines, Hydraulic Turbines –Introduction, Principles and	
operation of Pelton Wheel Turbine, Francis Turbine and Kaplan Turbine.	
Refrigeration: Introduction & Definitions, Principle and working of Vapor Compression	
Refrigeration and Vapour Absorption Refrigeration. Types of Air Conditioners.	
Demonstration and identification of Components in Automobile	
Demonstration of hydraulic turbines	
Demonstration of Components of the refrigerating unit.	
Module 5	
Introduction:	
Design Process: Definition of design, Phases of Design (Shigley Model)	
Belt drives: Open & Cross Belt Drives, Definitions -Slip, Creep, Velocity Ratio, the ratio	
of Tension in flat belt drives, advantages and disadvantages of V belts and Timing Belts,	
Simple numerical problems. (No derivations)	8 Hours L3
Gear drives	
Types-Spur, Helical, Bevel, Worm Gears and Rack and Pinion. Velocity Ratio, Advantages	
and disadvantages over Belt Drives, Simple Numerical Problems on Velocity Ratio.	
Demonstration on Belt drives	

Course Outcomes: Upon completion of this course, students will be able to

ou se ou completion of this course, stadents this se aste to		
Demonstrate the process of primary manufacturing, joining and additive manufacturing.		
Demonstrate the secondary manufacturing processes such as Turning, milling and drilling.		
Illustrate with applications the working principle of CNC Machines and varied robot		
configurations.		
Interpret the principles of utilizing water as effective source of power generation with added		
principles of I.C. Engines and refrigeration.		
Illustrate on the principles and applications of the core concept of power transmission in		
mechanical elements.		

Textbooks:

- 1. Rao, P.N. "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, Vol 1 and 2, 2019
- 2. Mikell P Groover, Automation, Production systems and computer-integrated manufacturing, Pearson learning, 4th Edition, 2018
- 3. K R Gopalkrishna, SudhirGopalakrishna, Dr.Girish H.N, Elements of Mechanical Engineering, Subhas publications, 2019 Edition.

References:

- 1. R K Rajput, Elements of Mechanical Engineering, Laxmi Publications Pvt Ltd, 2005
- 2. Pravin Kumar, Basic Mechanical Engineering, Pearson learning, 2013.
- 3. M. L. Sharma and R. P. Mathur, Internal Combustion Engines, Dhanpat Rai Publications, 2014
- 4. Dr.P.Radhakrishnan, CAD/CAM/CIM, 3rd edition, New Age International Publishers, New Delhi, 2008
- 5. V K Manglik, Elements of Mechanical Engineering, PHI Publications, 2013
- 6. Hajra Choudhry S K Flements of Workshop Technology, Vol 1 and 2, 2009 HEAD OF THE DEPARTMENTIES Dept of Science & Humanities

Global Academy of Technology Rajarajushwari Nagar Bengaluru-98.

SEMESTER I/II

SUBJECT: Engineering Mechanics

Subject Code	22CIV14/24	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	04	Examination Hours	03

Overview: The course is designed for I/II semester engineering students of all branches. It covers fundamental concepts and principles of engineering mechanics, application of these basics principles to solve static equilibrium problems related to **Civil**, **Mechanical**, **Automobile**, **Aeronautical**, **Mechatronics**, **Robotics and other allied engineering branches** where analysis for forces and displacement of particles or rigid bodies is involved. It also introduces the real-life problems involving the forces and computer applications to solve engineering mechanics problems. The knowledge of basic mathematics and physics is essential for the course.

Course Objectives: At the end of the course the student should be able to

CLO1	Understand the scalar presentation of forces and moments, apply the principles of engineering mechanics to particles and rigid bodies in equilibrium subjected to coplanar system of forces
CLO2	Realize the mechanical and sectional properties of engineering materials
CLO3	Understand the laws of motion. The kinematics of motion and the interrelationship

Content	No. of Hours/ RBT leveis
Module-1 Statics of particles	
Introduction to Engineering Mechanics: Basic idealization and principles in	
Engineering Mechanics. Newton's laws of motion, units and dimensions, scalar	
and vectors	8 Hours L3
Force and Systems of Forces, Moment of a force and couple, Varignon's theorem,	
Resolution and composition of forces – Coplanar concurrent and non-concurrent	
force system	
Module - 2 Equilibrium of Rigid bodies	
Equilibrium of Forces: Free body diagrams, Lami's theorem, equations of	
equilibrium for coplanar concurrent and non-concurrent force systems, Support	8 Hours L3
reactions for statically determinate beams at different loading conditions.	
Exercise: Demonstration of physical models	
Module - 3 Centroid and Moment of Inertia	
Centroid of planar and built-up sections. Moment of Inertia and radius of	
gyration; Plane and built-up sections	8 Hours L3
Exercise : Display of engineering materials and visit to laboratory for	
demonstration	

Module- 4 Friction	
Friction: Introduction, Frictional force, Types of friction-Static friction and Dynamic friction, Limiting friction, Laws of friction – Laws of Static friction and Laws of Dynamic friction, Angle of friction, Angle of Repose, Cone of friction,	8 Hours L3
Ladder friction. Problems on Static friction – Horizontal plane, Inclined plane,	
Interconnected bodies and ladder friction.	
Module - 5 Kinematics and Kinetics of particles	
Kinematics: Rectilinear and curvilinear motion, motion under gravity, projectile motion, relative motion Kinetics of Rigid Body: Introduction, Force, Mass and Acceleration, Work and Energy, Impulse and Momentum, D'Alembert's principles and dynamic equilibrium	8 Hours L3
Exercise: Demonstration of principles with real life examples	

Course Outcomes: The students will be able to:

C01	<i>Categorize</i> the system of forces and analyse for resultant of forces acting on structural elements
CO2	<i>Write</i> the equations of equilibrium and analyse the determinate structure for forces and moments
CO3	Evaluate centroid and moment of inertia of plane and composite sections
CO4	Apply equations of equilibrium in analyzing frictional forces.
CO5	Analyse the bodies in motion for motion characteristics and understand work energy principles

Textbooks:

1. Kumar, K. L., Kumar, V. Engineering Mechanics, Tata McGraw Hill, 4th edition, 2017

Reference books:

- S. Rajasekharan, G. Sankarsubramanian, "Engineering Mechanics- Statics and Dynamics" - Vikas Publishing House, 2011
- 2. F. P. Beer and E. R. Johnston et.al., Vector Mechanics for Engineers Statics and Dynamics, McGraw-Hill; 12th edition, 2019
- R. C. Hibbler, Engineering Mechanics: Statics and Dynamics, Pearson Education; 14thedition, 2017
- 4. S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, Engineering Mechanics (In SI Units), McGraw Hill Education; 5th edition, 2017

Web Reference:

https://nptel.ac.in/courses/112106286

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology, Rajarajeshwari Nagar Bengaluru-98.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of three test marks will be added to test component. CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and two tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern is shown in Table 1.

	Grand Total	100			
SEE	Semester End Examination	50	50		
	Quiz 2/AAT	05			
	Quiz 1/AAT	05			
CIL	Average of CIE	40	50		
CIE	CIE Test-3	40	50		
	CIE Test-2	40			
	CIE Test-1	40			
	Component	Marks	Total Marks		

Table 1: Distribution of weightage for CIE & SEE of Regular courses

					CO/P	O Ma	pping								
со/ро	P01	PO2	PO3	P04	PO5	PO6	P07	P08	60d	PO10	P011	P012	PS01	PSO2	PSO3
CO14/24.1	3	1													
CO14/24.2	2	2													
CO14/24.3	3	2	1												
CO14/24.4	2	2	1												
CO14/24.5	2	2													
Average	2.40	1.8	1												

SEMESTER – I/II

Course: Python Programming (Integrated)

Subject Code	22ISE151/251	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
Total Hours	50	Examination Hours	03
	No. of	Credits: 04	

Course Objectives: The course will enable students to:

CLO1	Learn the syntax and semantics of Python Programming Language.
CLO2	Write Python functions to facilitate code reuse and optimization.
CLO3	Illustrate the process of structuring the data using lists, tuples and dictionaries,
CLO4	Demonstrate the use of built-in functions related regular expression, strings and to navigate
	the file system.
CLO5	Appraise the need for working with various documents like Excel

CONTENTS	No. of Hours & RBT levels
Module 1 Introduction and Flow Control Introduction, Python Basics: Entering Expressions into the Interactive Shell, The Integer, Floating-Point, and String Data Types, String Concatenation andReplication, Storing Values in Variables, Your First Program, Dissecting Your Program. Flow control: Boolean Values, Comparison Operators, Boolean Operators, Mixing Boolean and Comparison Operators, Elements of Flow Control,Program Execution, Flow Control Statements, Importing Modules, Ending a Program Early with sys. exit(). Text Book 01: Chapters - 1, 2	08 Hours & L3
Module 2 Functions and List Functions: def Statements with Parameters, Return Values and return Statements, The None Value, Keyword Arguments and print(), Local and Global Scope, The global Statement, Exception Handling, A Short Program: Guess the Number Lists: The List Data Type, Working with Lists, Augmented AssignmentOperators, Methods, List-like Types: Strings and Tuples, References Text Book 01: Chapters - 3, 4	08 Hours & L3
Module 3 Dictionaries and String Dictionaries and Structuring Data: The Dictionary Data Type, PrettyPrinting, Using Data Structures to Model Real-World Things, Nested Dictionaries and Lists Manipulating Strings - Working with Strings, Useful String Methods Project: Password Locker Text Book 01: Chapters - 5, 6	08 Hours & L3
Module 4 Regular Expressions and Files Pattern Matching with Regular Expressions: Finding Patterns of Text without Regular Expressions, Finding Patterns of Text with Regular Expressions, More Pattern Matching with Regular Expressions, Greedy and Nongreedy Matching, The findall() Method, Character Classes, Making YourOwn Character Classes, The Caret and Dollar Sign Characters, The WildcardCharacter, Review of Regex Symbols, Case- Insensitive Matching, Substituting Strings with the sub() Method, Managing	08 Hours & L3
HEAD OF THE DEPARTMENT opt of Science & Humanities obal Academy of Technology.	

Rajarajeshwari Nagar Bengaluru-98

Complex Regexes, Combining re.IGNORECASE,	
re. DOTALL, and re. VERBOSE.	
Reading and Writing Files : Files and File Paths, The os.path Module, The File Reading/Writing Process, Saving Variables with the shelve Module, Saving Variables with the pprint.pformat() Function.	
Text Book 01: Chapters - 7, 8	
Module 5	
Files and Spreadsheets	
Organizing Files : The shutil Module, Walking a Directory Tree, Compressing Files with the zipfile Module.	08 Hours
Working with Excel Spreadsheets: Excel Documents, Installing theopenpyxl Module, Reading Excel Documents, Project: Reading Data from a Spreadsheet,	& L3
Writing Excel Documents, Project: Updating a Spreadsheet, Setting the Font Style	
of Cells, Font Objects, Formulas, Adjusting Rows and Columns, Charts.	
Text Book 01: Chapters - 9, 12	

PROGRAMMING EXERCISES

Lab No.	PROGRAMMING EXERCISES ON
1,	Programs on data types, string concatenation and replication
2.	Program on operators and Flow Control Statements
3.	Programs on loops
4.	Programs on Functions
5.	Programs on List and Tuples
6.	Programs on Dictionaries
7.	Programs on String manipulation functions
8.	Programs on Pattern Matching with Regular Expressions
9.	Programs on File Handling
10.	Programs on Excel
11.	Revision/ Practice Lab/ Doubt clearing Lab
12.	Continuous Internal Evaluation (CIE) Test

Note: The sample set of programs are provided on each topic for the reference only.

The course instructor/ Lab in-chargers are given a liberty to ask any kind of questions in the laboratory on the specified the topic and encourage students to write program by themselves.

Course Outcomes: Upon successful completion of this course, student will be able to

22ISE151.1	Experiment with the concepts of data types, Operators and Flow Control Statements of Python
22ISE151.2	Write programs using functions and strings.
22ISE151.3	Make use of methods to create and manipulate lists, tuples and dictionaries.
22ISE151.4	Develop programs for Pattern Matching and file handling using python packages
22ISE151.5	Utilize python packages to work on Spread Sheets

Recommended Tools: Linux. Liclipse, PyCharm, Visual Studio 2019,

Text Books:

1. Al Sweigart, "Automate the Boring Stuff with Python", William Pollock, 2015,ISBN: 978-1593275990.

Reference Books:

1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Green Tea

Press, 2015, ISBN: 978-9352134755.

- 2. Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, WileyIndia Pvt Ltd. ISBN-13: 978-8126556014.
- 3. Wesley J Chun, "Core Python Applications Programming", 3rd Edition, Pearson EducationIndia, 2015. ISBN-13: 978-9332555365.
- 4. Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures and Algorithms in Python", 1st Edition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-8126562176.
- 5. ReemaThareja, "Python Programming using problem solving approach", OxfordUniversity press, 2017. ISBN-13: 978-0199480173
- 6. Charles R. Severance, "Python for Everybody: Exploring Data Using Python- 3",1st Edition, Shroff Publishers, 2017. ISBN: 978-9352136278.

Web Reference: <u>https://infytq.infosys.com/</u> <u>https://www.learnbyexample.org/python/</u> <u>https://www.learnpython.org/</u> <u>https://pythontutor.com/visualize.html#mode=edit</u>

Scheme of Examination: Scheme of Evaluation: (Integrated courses) Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

The laboratory assessment would be restricted to only the CIE evaluation. Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. The average of the three tests are taken for computation of CIE on a scale of 30, the CIE would also include laboratory evaluation for 20 marks. The laboratory marks of 20 would comprise of 10 marks for regular laboratory assessment to include lab record and observation. 10 marks would be exclusive for laboratory internal assessment test to be conducted at the end of the semester. Typical Evaluation pattern for integrated courses is shown in the Table below

	Component	Marks	Total Marks		
	CIE Test-1	30			
	CIE Test-2	30	50		
CIE	CIE Test-3	30	50		
	Laboratory	20			
SEE	Semester End Examination	50	50		
	Grand Total				

Table: Distribution of weightage for CIE & SEE of Integrated courses

CO/PO Mapp	oing															
CO/PO	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	60d	PO10	P011	P012	PSO1	PSO2	PSO3	PSO4
22ISE151.1	3	3	2	2	3							2				
22ISE151.2	3	3	2	2	3							2				
22ISE151.3	3	3	2	2	3							2				
22ISE151.4	3	3	2	2	3							2				
22ISE151.5	3	3	2	2	3							2				
Average	3	3	2	2	3							2				

Low-1: Medium-2: High-3 HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology,

Rajarajeshwari Nayar Bengaluru-98.

Semester I / II

COURSE: COMMUNICATIVE ENGLISH

Course Code	22EGH16/26	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	1 hour

Course Objectives

To enable students to apply the knowledge of various forms of communication of English language in of engineering by making them to learn the following:

CLO1	Enhance the effective writing practices.
CLO2	Incorporate strong reading skills.
CLO3	Demonstrate efficient listening skills.
CLO4	Learn different styles of speaking.

Content	No. of Hours/RBT levels
Module 1- Writing Section Academic writing module: Responses to the academic writing module are short essays or general reports, addressed to an educated non-specialist audience. There are two compulsory tasks. Task 1 requires 150 words, and looking at a diagram, table, or data and to present the information in their own words. Task 2 requires at least 250 words, students to be presented with a point of view, argument, or problem and asked to provide general factual information, present a solution, justify an opinion, evaluate ideas and evidence, etc. It includes two tasks wherein the topics are of general interest and relatable for candidates applying for an undergraduate or postgraduate program.	3/L3
For your first task, you will be handed a paper that would contain either a diagram, table, or graph. You will be required to recapitulate and define the given data in your own words. You may be asked to explain a certain data entry, process the given information, or a flowchart to logically arrive at a conclusion. In the next task, you need to write an essay as a response to your deduction from the given data and support your argument with relevant examples, through the given data. Please note that the writing style should be strictly formal.	
Module 2- Reading Section This includes three long paragraphs which can be either descriptive, factual or analytical. These paragraphs are basically excerpts taken from newspapers, research works, journals, books, or even magazines.	3/L3
Module 3 - Listening Section The Listening module is divided into four sections. The first two conversations are concerned with social needs, while the last two are concerned with situations more closely related to education. Sections 1 and 2 are about every day, social situations Recording 1: The first recording would have a conversation between two people set in an everyday social context. Recording 2 – The second recording would happen to be a monologue set in an everyday social context. Sections 3 and 4 are about educational and training situations Recording 3 – The following recording would be a conversation between four people set in an educational or training context.	3/L3

Recording 4 – And the final recording would be a monologue on an academic	
subject	
Module 4 - Speaking Section	
The Speaking section is like a structured interview with an emphasis on general	
speaking skills.	
Part 1 introduction and interview (4–5 minutes)	
For the first five minutes, you will be asked some mundane questions about	
yourself such as family, home, studies, hobbies and interests, and so on.	
Part 2 long turn (2–3 minutes)	3/L3
Next, a flash card will be handed over that would contain a certain topic. You will	
be given a minute or two to familiarize yourself with the topic as you would need	
to speak on that topic for about two minutes. Post your speech	
Part 3 discussions (5–6 minutes)	
Deeper questions and abstract discussions would take place based on the given	
topic and your speech. You will get the opportunity to explore your given topic and	
delve into deeper issues.	

Course Outcomes

Upon completion of this course, student will be able to:

CO11.1	Write concisely using effective practices.
CO11.2	Read comprehension effectively and decipher required information.
CO11.3	Listen to audio from various settings and decode information.
CO11.4	Practically demonstrate good speaking skills.

Text books:

1. The Official Guide to IELTS: https://www.cambridge.org/us/cambridgeenglish/official-exampreparation-materials/product/official-cambridge-guide-ielts.

2. Barron's IELTS: International English Language Testing System: https://www.worldcat.org/title/barrons-ielts-international-english-language-testingsystem/oclc/1080598431?referer=di&ht=edition

References:

1. Check Your English Vocabulary for IELTS: https://www.bloomsbury.com/us/check-your-english-vocabulary-for-ielts-9781472947376/

2. McGraw-Hill Education 6 IELTS Practice Tests With Audio: https://www.mhprofessional.com/testprep-study-guides/language/9780071845151-usa-mcgraw-hill-education-6-ielts-practice-tests-withaudio-group

CO/PO M	apping	5										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO11.1	2	2				2		1		2		2
CO11.2	2	2				2		1		2		2
CO11.3	2	2				2		1		2		2
CO11.4	2	2				2		1		2		2
Average	2	2				2		1		2		2

Low-1: Medium-2: High-3

HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology, Rajarajeshwari Napar Bengaluru-98.

Semester I/II

Engineering Chemistry (Integrated)

Subject Code Hours/Week (L: T: P)	22CHE12/22 3:0:2	CIE Marks SEE Marks	50
Total Hours	64	Examination Hours	03
Semester: I/II		No. of Cre	

Course Learning Objectives: The course will enable the students to

CLO1	Know the fundamental concepts of Chemistry which are very much essential in day to day life, in industries and in research and development to solve Engineering related challenges.
CLO2	Impart Practical skills for better understanding of theoretical concepts.

Content	No. of Hours/
	RBT levels
Module-1: Electrochemical Energy Systems	08 Hours/
Electrochemistry: Introduction: EMF of cell, Free Energy, Single electrode potential-Nernst	L2
equation, Numerical problems. Reference Electrodes: Introduction, Construction, working and	
applications of Calomel electrode, Ion selective electrodes-Glass electrode, determination of	
pH using Glass electrode.Concentration Cells: Introduction, numerical problems	
Energy Systems: Introduction, Classification. Construction, working and applications of Li-ion	
battery and recycling of Lithium batteries.	
Fuel Cells: Introduction, Construction, working and applications of Methanol-Oxygen fuel	
cell(acid electrolyte-based methanol oxygen fuel cell).	
Module 2 Corrosion Science and Metal finishing	08 Hours/
Corrosion Science:Introduction: Electrochemical theory of corrosion. Types of corrosion-	L2
Differential metal corrosion, differential aeration corrosion and stress corrosion. Factors	
affecting the rate of corrosion-Anodic & Cathode areas, pH of corrosion medium and Nature of	
corrosion product. Corrosion control: Metal coating. Galvanization. Cathodic protection-	
sacrificial anode method and impressed current method.	
Metal Finishing: Introduction, Technological importance, Electroplating-Introduction,	
Electroplating of Chromium, Electroless plating-Introduction, Electroless plating of copper on	
PCB, Differences between electroplating and electroless plating.	
Module 3 Chemical Energy Sources, Lubricants & Refractories	08 Hours/
Chemical Energy Sources: Fuels - Introduction, Classification, Calorific value-GCV & NCV,	L2,L3
Determination of Calorific value by Bomb Calorimeter, Numerical problems. Petroleum	,
cracking-Fluidized bed cracking	
Alternative Energy sources: Bio Diesel, Power alcohol, CNG, Biogas, Hydrogen-as a fuel, Solar	
energy-PV cell: construction, working and applications.	
Lubricants: Introduction, Classifications, Properties- Viscosity index, Flash point, Drop point test	
and applications of lubricants.	
Refractories : Introduction, Properties, brief account of steps involved in manufacturing with	
examples and applications.	
Module 4 Polymers& Water Technology	08 Hours/
Polymers: Introduction, Synthesis and applications of Polyurethane. Polymer composites-	L2, L3
Kevlar Fibre and carbon fibre,	22,23
Conducting Polymers: Synthesis & Mechanism of conduction in conducting poly aniline and	
Photoconductive polymers.	

Water Technology: Introduction, impurities in water, determination of hardness of water, COD-	
definition, determination and numerical problem, Softening of water by ion exchange process,	
Desalination of water-Reverse Osmosis, Sewage treatment.	
Module 5 Instrumental methods of analysis, Chemistry of Nanomaterials and Environmental	08 Hours/
Chemistry	L2, L3
Instrumental methods of analysis: Theory, instrumentation and application of Colorimeter,	
Potentiometer and Conductometer.	
Chemistry of Nanomaterials: Introduction. synthesis of ZnO nano material by solution	
combustion method & synthesis of TiO2nano material by sol gel method. Characterization	
techniques- PXRD and SEM. Applications. Carbon based nanomaterials-Introduction to	
fullerenesCarbon nano tubes & Graphene	
Environmental Chemistry: Air Pollutants: Sources, effects and control of Primary air pollutants-	
Carbon monoxide, Oxides of nitrogen and Sulphur. Waste Management: e-waste & Biomedical	
waste (scientific land filling, composting and recycling). Recycling of water and Rain water	
harvesting	

List of Engineering Chemistry Lab Experiments

SL. No.	Experiments	No. of Hours/ RBT levels
	Part- A: Instrumental Experiments	
1	Determination of pKa value of a weak acid using pH meter	2
2	Estimation of FAS present in the given solution by potentiometric method	2
3	Determination of amount of HCl and CH ₃ COOH present in a mixture by conductometry	2
4	Estimation of copper in the effluent from electroplating industry by colorimetric method.	2
	Part-B: Volumetric Experiments	
1	Determination of Chemical oxygen demand of industrial waste water	2
2	Determination of percentage of copper in brass by lodometric method	2
3	Determination of percentage of iron in the given rust solution using standard Potassium Dichromate solution (External indicator method)	2
4	Determination of Total hardness of given water sample by rapid EDTA method	2
5	Determination of Nickel using EDTA by complexometric method	2

SL. No.	Experiments	No. of Hours/ RBT levels
	Part-C: Virtual & Demonstration Experiments	
1	Determination of Viscosity coefficient of a liquid using viscometer (Virtual Experiment)	2
2	Determination of calorific value of solid fuel using bomb calorimeter (Demonstration)	2
3	Synthesis of ZnO nanomaterial by sol-gel method (Demonstration)	2

Textbooks:

- 1. Uppal M.M, Jain and Jain. Engineering Chemistry, Khanna Publishers, 35th Edition, 2013.
- 2. P.C. Jain and Monica Jain, A test Book of Engineering Chemistry, Dhanpat Rai Publications,

New Delhi, 12thEdition, 2012. HEAD OF THE DEPARTMENT Dept of Science & Humanities Clobal Academy of Technology,

Rajarajeshwari Nagar Bengaiuru-98

- 3. SS Dara &Dr. SS Umare. A Text book of Engineering Chemistry, S Chand & Company Ltd., 12th Edition, 2011.
- 4. R.V. Gadag and Nitthyananda Shetty-A Text Book of Engineering Chemistry, I.K. International Publishing house. 2nd Edition, 2016.
- 5. B.S. Jai Prakash, R. Venugopal, Sivakumaraiah& Pushpa Iyengar.,- Chemistry for Engineering Students", Subash Publications, Bangalore.5th Edition, 2014
- 6. Vogel's A.I. A text book of quantitative analysis, 35th edition, 2012.
- 7. Willard, Merit, Dean and Settle, A text book of Instrumental analysis, 6th edition 2012.

Reference books:

- 1. F.W. Billmeyer, Text Book of Polymer Science, John Wiley & Sons, 4th Edition, 1999.
- 2. M.G. Fontana, N.D. Greene, Corrosion Engineering, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 3. Principles of Physical Chemistry, B.R. Puri, L.R. Sharma & M.S. Pathania, S. Nagin Chand & Co., 41 Edition, 2004.
- 4. G.A. Ozin& A.C. Arsenault, "Nanotechnology A Chemical Approach to Nanomaterials". RSC Publishing, 2005.
- 5. Bansal R.K., A Text Book of Engineering Mechanics, Laxmi Publications; 6th edition, 2015.
- 6. G.H Jeffery, J Bassett, J Mendham and R.C. Denney Vogel's A.I. A text book of quantitative analysis, Dorling Kindersley (India) Pvt., Ltd. 35th edition, 2012.
- 7. Gary D Christian, Analytical Chemistry, Wiley India, 6th edition, 2015.
- T. Pradeep, A Text book of Nanoscience and Nanotechnology, McGraw Hill Education (India) Pvt., Ltd., 1st edition, 2015.

Course Outcomes: Upon successful completion of this course, student will be able to:

CO1	Discuss the electrochemical energy systems such as electrodes, batteries and fuel cells.	
CO2	Explain the fundamental concepts of corrosion, its control and surface modification	
	methods namely electroplating and electroless plating.	
CO3	Interpret the concepts of nonrenewable (Petroleum), renewable (solar energy) &	
	alternative energy sources, Lubricants and Refractories.	
CO4	Enumerate the importance, synthesis and applications of Polymer, water treatment an	
	water analysis by volumetric methods.	
CO5	Illustrate the fundamental principles and applications of instrumentations, nanomaterials,	
	environmental pollution and its control measures.	
CO6	Evaluate the percentage of copper, Nickel and Iron in the given analyte solution.	

SEMESTER - I/II

COURSE: COMPUTER AIDED ENGINEERING DRAWING

Course Code	22MEG13/23	CIE Marks	50
Hours/Week (L: T: P)	2:0:2	SEE Marks	50
No. of Credits	3	Examination Hours	03

Overview: The course is designed for the I/II Semester Engineering students of all branches. It covers fundamental concepts and principles of engineering drawing with the emphasis on use of drafting software. Engineering drawing is a graphical medium of expression of technical details without the barrier of a language and termed as universal language of engineers. Engineering drawings are important in conveying useful information to other engineers with standardized conventions, rules, and regulations. The end goal of an engineering drawing is to convey all the required technical information that will allow a manufacturer to produce any kind of component in all the fields of engineering.

Course Objectives: At the end of the course, the student should be able to

CLO1	Understand the concept of BIS conventions in Engineering drawing.
CLO2	Apply the theoretical concepts to sketch orthographic projections in different positions.
CLO3	Understand the concepts of isometric projections of combination of solids.
CLO4	Use CAD tools for creation of Engineering drawings.

CONTENT	No. of Hours/ RBT levels
 Module 1: Introduction to Engineering Drawing & Orthographic Projections of points and lines BIS conventions and standards. Introduction to drafting software, Planes of projection, reference line, Quadrants and conventions employed. Projections of points in all the four quadrants. Projections of straight lines (First angle projection only): Introduction, Line inclined to both the planes, true and apparent lengths, true and apparent inclinations to reference planes. Application problems as demonstration only. 	10 Hours L3
Module 2: Projections of plane surfaces (First angle projection only): Introduction, Projections of regular plane surfaces-triangle, square, rectangle, pentagon, hexagon and circle - inclined to both the planes (change of position method only).	09 Hours L3
Module 3: Projections of Solids Introduction, Type of solids, Projections of right regular prisms like square, hexahedron(cube), pentagon, hexagon and pyramids like square, pentagon, hexagon, cone & tetrahedron in different positions (Inclined to both HP and VP).	12 Hours L3
Module 4: Isometric Projection (using isometric scale only) Introduction, Isometric scale, Isometric projection of combinations of solids (Maximum of two solids) like cube, regular prisms, cylinders, pyramids, cone, tetrahedron, frustum of pyramids, cone & sphere. Demonstration of 3D solid models of prisms and pyramids using modelling software.	09 Hours L3

Problems from the above modules must be practiced on computer aided drafting software.

HEAD OF THE DEPARTMENT

Dept of Science & Humanities Afobal Academy of Technology

Rajarajeshwari Nugar Bengaluru-98.

COURSE OUTCOMES: The students will be able to

CO1:	Demonstrate competence in the basics of orthographic projections of points, lines and
	planes.
CO2:	Sketch the orthographic projections of solids inclined to both horizontal & vertical planes.
CO3:	Generate isometric projections of various combinations of solids.
CO4:	Demonstrate 2D drafting of lines, planes & solids using solid edge software.

<u>Textbooks:</u>

- **1.** K.R. Gopala Krishna, Sudhir Gopalakrishna, Engineering Graphics, Subhas Publishers, Bangalore, 40th edition, 2018-19.
- 2. N.D. Bhatt, Engineering Drawing, Charotar Publishing House, Gujarat, 53rd edition, 2014

References:

- 1. Luzadder Warren J., Duff John M., Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production, Pearson India, 2015.
- 2. P. L. Varghese, Engineering Graphics McGraw Hill Education (India) Pvt. Ltd, and New Delhi, 2013.
- 3. N.S. Parthasarathy & Vela Murali, Engineering Drawing, Oxford University Press, 2015.

ASSESSMENT

CIE Assessment:

Particulars	Marks
Test 1 (Module 1 and Module 2) - @ 8 week	30
Test 2 (Module 3 and 4) - @ 14 weeks	30
Average of Test 1 & Test 2	30
Periodic Evaluation of Sketch Book	20
Total Marks	50

SEE Assessment: Maximum of THREE QUESTIONS will be set for SEE as per the pattern given below:

Scheme of Evaluation:

Modules	Marks Allocated
Module 1 & 2: Projection of Points, Lines Or Projection of Planes	30
Module 3: Answer any ONE question out of TWO Questions from Projection of solids	40
Module 4: Answer any ONE question out of TWO Questions from Isometric Projections	
Total Marks	100

Question No.	Solutions and sketching in the sketch book	Computer Printout	Total Marks
1	15	15	30
2	20	20	40
3	15	15	30
Total Marks	50	50	100

Students have to submit the computer printouts and the hand drawn sketches at the end of the examination for evaluation.

SEMESTER - I/II

Course: C Programming (Integrated)

Course Code	22CSE14/24	CIE Marks	50
Hours/Week (L: T: P)	3:0:2	SEE Marks	50
No. of Credits	4	Examination Hours	3

Course Objectives:

CO1	Write algorithms, flowcharts and programs.	
CO2	Implement different programming constructs and decomposition of problems	
	intofunctions	
CO3	Use and implement data structures like arrays and structures to obtain solutions.	
CO4	Define and use of pointers with simple applications	

Content	No.of Hours/ RBT level
Module 1 INTRODUCTION TO C PROGRAMMING Introduction to Computing: Introduction, Art of Programming through Algorithms and Flowcharts. Basic structure of C program, executing a C program. Constants, Variable and Data Types: Introduction, Character Set, C Tokens, Keywords andIdentifiers, Constants, Variables, Data Types, Declaration of Variables, Assigning Values to Variables, Defining Symbolic Constants, Managing I/O functions: Formatted Input and Formatted Output functions. Operators and Expressions: Introduction, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity, Example Programs.	08 Hours L2
Module 2 CONTROL STRUCTURES Decision Making and Branching: Introduction, Decision Making with IF Statement, Simple IF Statement, the IF-ELSE Statement, Nesting of IF-ELSE Statements, The ELSE IF Ladder, The Switch statement, Example Programs.	08Hours L3
Decision Making and Looping: Introduction, The while Statement, The do statement, The forstatement, Jumps in LOOPS, Example Programs.	
Module 3 INTRODUCTION TO ARRAYS AND STRINGS Arrays: One-dimensional Arrays, Declaration of One-dimensional Arrays, Initialization of One- dimensional Arrays, Example programs. Two-dimensional Arrays, Declaration of Two- dimensional Arrays, Initialization of Two-dimensional Arrays, Example programs. Character Arrays and Strings: Declaring and Initializing String Variables, Reading Strings from Terminal, Writing Strings to Screen, Arithmetic Operations on Characters, String-handling Functions, Example Programs.	08 Hours L3

HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology, Rajarajeshwari Nagar Bengaluru-98.

Module 4	
FUNCTIONS AND INTRODUCTION TO POINTERS	
User-defined Functions: Elements of User-defined Functions Return Values and	
their Types,Category of Functions, Recursion, Example Programs.	08 Hours
Pointers: Introduction, Declaring Pointer Variables, Initialization of Pointer variables,	L3
accessing a Variable through its Pointer, Pointer Expressions, Pointer Increments and	
Scale Factor, ExamplePrograms.	
Module 5	
STRUCTURES AND FILE MANAGEMENT	
Structures: Introduction, Defining a structure, declaring structure variables,	
accessing structuremembers, structure initialization, array of structures.	08 Hours
File Management in C: Introduction, Defining and opening a file, closing a file,	L3
Input/output andError Handling on Files.	

	Program List
1	Write a C program to perform swapping of two numbers using
	i) Repetitive subtraction technique
	ii) Bitwise operators.
2	Write a C program to find the circumference and area of a circle. The input must be an
	integer valuebut the output must be rounded off to 3 decimal digits.
3	Write a C program:
	i) To find roots of a Quadratic equation.
	ii) Generate the Fibonacci sequence of first N numbers.
4	Write a C program to search for an element in an array using
	i) Binary Search algorithm
	ii) Linear Search algorithm
5	Write a C program to arrange the elements of an integer array using Bubble Sort algorithm.
6	Write a C program to input two matrices and perform matrix operations like
	multiplication, findingtrace of a matrix, transpose of a matrix.(Any one operation may be
	asked in the examination).
7	Write a C program to check whether the given string is palindrome or not without
	using Libraryfunctions.
8	Write a C program to accept the number as a parameter through a user defined function
	and find itsfactorial by using recursion.
9	Write a C program to count the number of lines, words and characters in a given text file
	and write the output to a separate file.
10	Write a C program to maintain a record of n student details using an array of structures
	with four fields - Roll number, Name, Marks and Grade. Calculate the Grade according to
	the following conditions. Marks Grade >=80 A >=60 B >=50 C >=40 D.

COURSE OUTCOMES:

Upon completion of this course, student will be able to:

CO14.1/CO24.1	Describe the fundamentals of C programming Language.
CO14.2/CO24.2	Apply appropriate Control structures to solve problems.
	Describe the concept of Arrays and Strings
CO14.4/CO24.4	Write User defined functions and apply concept of recursion and files to solve
	problems
CO14.5/CO24.5	Describe the concept of Pointers and Structures.

Textbooks:

1. E. Balaguruswamy, "Programming in ANSI C", 8th Edition, 2019, McGraw Hill Education, ISBN: 978-93-5316-513-0.

Reference books:

- 1. Pradip Dey, Manas Ghosh, "Programming in C", 2nd Edition, 2018, Oxford University Press, ISBN: 978- 01-9949-147-6.
- 2. Kernighan B.W and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, 2015, Pearson Education India, ISBN: 978-93-3254-944-9.
- 3. Yashavant P. Kanetkar, "Let Us C", 16th Edition, 2019, BPB Publications, ISBN: 978-93-8728-449- Jacqueline A Jones and Keith Harrow, "Problem Solving with C", Pearson Education. ISBN: 978-93-325-3800-9.
- 4. Jacqueline A Jones and Keith Harrow, "Problem Solving with C", Pearson Education. ISBN: 978-93-325-3800-9.
- 5. Dr. Guruprasad Nagraj, "C Programming for Problem Solving", Himalaya Publishing House. ISBN-978- 93-5299-361-1.

MOOCs:

- 1. http://elearning.vtu.ac.in/econtent/courses/video/BS/14CPL16.html
- 2. https://nptel.ac.in/courses/106/105/106105171/

Scheme of Examination:

Scheme of Evaluation:

(Integrated courses)Semester

End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to

50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20marks each. Students are required to answer any **five full questions** choosing at least **one full question from each module.**

The laboratory assessment would be restricted to only the CIE evaluation.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. The average of the three tests are taken for computation of CIE on a scale of 30, the CIE would also include laboratory evaluation for 20 marks. The laboratory marks of 20 would comprise of 10 marks for regular laboratory assessment to include lab record and observation. 10 marks would be exclusive for laboratory internal assessment test to be conducted at the end of the semester.

Typical Evaluation pattern for integrated courses is shown in the Table below

	Integrated co	urses	
	Component	Marks	Total Marks
	CIE Test-1	30	
	CIE Test-2	30	
CIE	CIE Test-3	30	50
	Laboratory	20 -	
SEE	Semester End Examination	100	50
	G	rand Total	100

Table: Distribution of weightage for CIE & SEE of

со/ро	P01	P02	PO3	P04	PO5	P06	P07	PO8	60d	P010	P011	P012	PSO1	PSO2
CO14.1/CO24.1	3	3	2		3			3	3					
CO14.2/CO24.2	3	3	2		3			3	3					
CO14.3/CO24.3	3	3	2		3			3	3					
CO14.4/CO24.4	3	3	2		3			3	3					
CO14.5/CO24.5	3	3	2		3			3	3					
Average	3	3	2		3		14	3	3					
Low-HENEdigm	2: Hi	gh-3	™) = J⊂ (n ⊂ (×*	D. A trans										

Rajarajeshwari Nagar Bengaluru-98.

SEMESTER I/II

SUBJECT: WASTE MANAGEMENT

Subject Code	22CIV151/251	CIE Marks	50
Hours/Week (L: T: P)	3:2:0	SEE Marks	50
No. of Credits	04	Examination Hours	03

Course Objectives: At the end of the course the student should be able to

CLO1	Understand on various aspects of solid waste management practiced in industries.
CLO2	Recovery of products from solid waste to compost and biogas, incineration and energy recovery
CLO3	Hazardous waste management and treatment, and integrated waste management.

Content	No. of Hours/ RBT levels
Module-1	
Introduction to Solid Waste Management: Classification of solid wastes (source and type based), solid waste management (SWM), elements of SWM, ESSWM (environmentally sound solid waste management) and EST (environmentally sound technologies), factors affecting SWM, Indian scenario, progress in MSW (municipal solid waste) management in India. Indian and global scenario of e-waste	10 Hours /L3
Module - 2	
Waste Generation Aspects: Waste stream assessment (WSA), waste generation and composition, waste characteristics (physical and chemical), health and environmental effects (public health and environmental), comparative assessment of waste generation and composition of developing and developed nations, a case study results from an Indian city, handouts on solid waste compositions. E-waste generation.	10Hours /L3
Module - 3	
Collection, Storage, Transport And Disposal of Wastes: Waste Collection, Storage and Transport: Collection components, storage-containers/collection vehicles, collection operation, transfer station, waste collection system design, record keeping, control, inventory and monitoring, implementing collection and transfer system, a case study. Waste Disposal: key issues in waste disposal, disposal options and selection criteria, sanitary landfill, landfill gas emission, leachate formation, environmental effects of landfill, landfill operation issues, a case study	10 Hours /L3
Module- 4	
Waste Processing Techniques & Source Reduction, Product Recovery & Recycling: Purpose of processing, mechanical volume and size reduction, component separation, drying and dewatering. Source Reduction, Product Recovery and Recycling: basics, purpose, implementation monitoring and evaluation of source reduction, significance of recycling, planning of a	10 Hours /L3

recycling programme, recycling programme elements, commonly recycled	
materials and processes, a case study	
Module - 5	
Hazardous Waste Management and Treatment: Identification and	
classification of hazardous waste, hazardous waste treatment, pollution	10 Hours /L3
prevention and waste minimization, hazardous wastes management in India.	
E-waste recycling.	

Course Outcomes: The students will be able to:

CO 1	Apply the basics of solid waste management towards sustainable development
CO 2	Apply technologies to process waste and dispose the same.
CO 3	Design working models to convert waste to energy
CO 4	Design working models to convert waste to energy

Textbooks:

- 1. Tchobaanoglous, G., Theisen, H., and Samuel A Vigil, Integrated Solid Waste Management, McGraw-Hill Publishers, 1993. 2.
- 2. Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H., Waste Management, Springer, 1994.

Reference books:

- 1. White, F. R., Franke P. R, & Hindle M., Integrated solid waste management: a life cycle inventory. McDougall, P. John Wiley & Sons. 2001.
- 2. Nicholas, P., & Cheremisinoff, P. D., Handbook of solid waste management and waste minimization technologies, Imprint of Elsevier Science. 2005.

Web Reference:

- 1. https://nptel.ac.in/courses/105103205
- <u>https://www.youtube.com/watch?v=k0ktJRoRcOA</u>
- 3. https://nptel.ac.in/courses/103/107/103107125/
- <u>https://onlinecourses.nptel.ac.in/noc22_ce76/preview</u>
- 5. https://onlinecourses.swayam2.ac.in/cec20_ge13/preview

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of four sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of three test marks will be added to test component. CIE is executed by way of two quizzes / Alternate Assessment Tools (AATs), and two tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of

research work/group activity/any other. HEAD OF THE DEPARTMENT Dept of Science & Humanities Global Academy of Technology.

Rajarajeshwari Nagar Bengaluru-98.

Typical Evaluation pattern is shown in Table 1.

Table 1: Distribution of weightage for CIE & SEE of Regular courses

Compo	nent	Marks	Total Marks	
	CIE Test-1	40		
Ī	CIE Test-2	40		
CIE	CIE Test-3	40		
UE.	Average of CIE	40	50 	
	Quiz 1/AAT	05		
	Quiz 2/AAT	05		
SEE	Semester End Examination	50	50	
Grand	Total		100	

	CO/PO Mapping											
СО/РО	P01	P02	PO3	P04	PO5	PO6	P07	P08	60d	PO10	P011	P012
CO 1	3					3	3					
CO 2	3					3	3					
CO 3	3					3	3					
CO 4	3					3	3					
Average	3					3	3					

Semester I / II Innovation & Design thinking

Course Code	22IDT16/26	CIE Marks	50
Hours/Week (L: T: P)	1:0:0	SEE Marks	50
No. of Credits	1	Examination Hours	1 hour

Course Objectives

CLO1	To explain the concept of customer-oriented innovation approach
CLO2	To generate and develop creative ideas
CLO3	To understand various approaches and methods onto business process

Content	No. of Hours/RBT levels
Module - 1 Design Thinking Introduction, Principles of Design Thinking, process of Design Thinking, problem space and solution space. Understand the problem statement: PESTEL Analysis, Trend Impact Analysis, Delphi method, Ishikawa diagram, Root conflict analysis, Field maps Empathetic design: Nine dimensions of descriptive observations, methods for Empathetic design - Artifact Analysis, Cognitive Walkthrough, Empathy map, Heuristic Evaluation, Customer Journey, Mystery Shopping, Behavioural Mapping & Tracking	6/L3
Module -2 Defining the problem – Persona, jobs- to-be-done methods Ideate phase, stages, Internal and external sources of information, Creative principles, Intuitive Creative Techniques, Systematic Analytical Techniques, Evaluation of Ideas Prototype phase, Minimum viable product, Methods to analyse prototypes Testing Phase, methods of testing, conducting interviews, Conduct surveys, Kano model, desirability testing	6/L3

Course Outcomes

Upon completion of this course, student will be able to:

CO 1	Describe design thinking process used to solve problems by focusing on the needs of the
101	customer.
CO 2	Analyse the problem to ascertain its context and origins and gain a better understanding
02	of the prospective customers
CO 3	Analyse the data gathered during understand and observation stages to define the
	problem statement
CO 4	Create ideas and solutions for the problem that has been specified
CO 5	Create a prototype by validating assumptions and ideas that can be tested by the user.

Textbooks:

- 1. Handbook of Design Thinking: Tips & Tools for how to design thinking by Christian Mueller-Roterberg, Kindle Direct Publishing
 - HEAD OF THE DEPARTMENT

Dept of Science & Humanities

Global Academy of Technology,

Rajarajeshwari Nagar Bengaluru-98.

- 2. John.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengage learning (International edition) Second Edition, 2013.
- 3. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press, 2009.

References:

1. Yousef Haik and Tamer M.Shahin, "Engineering Design Process", Cengage Learning, Second Edition, 2011.

Web links and Video Lectures (e-Resources)

- 1. <u>www.tutor2u.net/business/presentations/./productlifecycle/default.html</u>
- 2. https://docs.oracle.com/cd/E11108_02/otn/pdf/./E11087_01.pdf
- 3. https://www.mindtools.com/brainstm.html
- 4. https://designthinkingforeducators.com/design-thinking/

<u>CO – PO MAPPING</u>

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
22IDT16.1	2	10	•	-	-			-		-	-	2
22IDT16.2	2	2	2	-	2	121		2	62 -	5		2
22IDT16.3	2	2	2	æ		141	994) 1994)	н	(B)	2		2
22IDT16.4	2	2	2		-		æ)	×				2
22IDT16.5	2	2	2	-	12	1945 1947		Ē	2	Ξ.	-	2
22IDT16	2	2	2	-	-	-	4 0	-	2 4 0	<u>u</u>	19 0	2

Low-1: Medium-2: High-3

Semester II Course: Integral Calculus and Differential Equations

CIE Marks	50
	50
	03
	SEE Marks Examination Hours

Course Objectives

To enable students to apply the knowledge of Mathematics in various fields of engineering by making them to learn the following:

CLO1	Multiple integrals and Beta-Gamma functions
CLO2	Vector integration
CLO3	First and higher order ordinary differential equations
CLO4	Partial differential equations

Content	No. of Hours/ RBT levels									
Module 1										
Multiple integrals: Evaluation of double integrals by direct evaluation, change of order and change of variables. Evaluation of triple integrals. Beta and Gamma functions; relation between beta and gamma functions	10 Hours L2, L3									
- simple problems.										
Module 2 Line integrals, Green's theorem in the plane, Stoke's theorem: Relation between line and surface integrals, Gauss Divergence theorem: Relation between surface and volume integrals- simple problems.	10 Hours L2, L3									
Module 3										
Differential Equations of first order and first degree: Variable separable, Linear equations, Bernoulli's equation, Exact and reducible to exact differential equations. Equations of first order and higher degree (solvable for p only).	10 Hours L2, L3									
Module 4										
Linear differential equations with constant coefficients -Inverse differential operators, method of variation of parameters. Cauchy's and Legendre's Linear differential equations.	10 Hours L2, L3									
Module 5										
Formation of partial differential equations. Solution by direct integration, linear	10 Hours									
equations of first order. Homogeneous linear equations with constant	L2, L3									
coefficients. Method of separation of variables.	Awarz									
Cland Academy of Tech										
Ipon completion of this course, student will be able to: Rejarajochwarinagar, Bengi										
CO21.1 Evaluate double and triple integrals										
CO21.2 Evaluate definite integrals using beta and gamma functions										
CO21.3 Evaluate integrals using Green's, Stokes and Gauss divergence the	orem									
LUZI.4 [Solve linear and nonlinear orginary unterential equations										

Text books:

HEARgAErTehgAEEARGINFathematics, B.S. Grewal, Khanna Publishers, 44th Edition, 2017. Dept of Science & Humanities Global Academy of Technology,

Rajarajeshwari Nagar Bengaluru-98.

2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2006

References:

- 1. Advanced Engineering Mathematics, E. Kreyszig, John Wiley & Sons, 10th Edition, 2016.
- 2. H.K. Dass and Er. Rajnish Verma: Higher Engineering Mathematics, S. Chand publishing, 1stedition, 2011.
- 3. A Text Book of Engineering Mathematics, N. P. Bali and Manish Goyal, Laxmi Publications, 6thEdition, 2014.
- 4. Calculus, James Stewart, Cengage Publication, 7th Edition, 2012.

Scheme of Examination:

Semester End Examination (SEE):

SEE Question paper is to be set for 100 marks and the marks scored will be proportionately reduced to 50. There will be two full questions (with a maximum of three sub questions) from each module carrying 20 marks each. Students are required to answer any five full questions choosing at least one full question from each module.

Continuous Internal Evaluation (CIE):

Three Tests are to be conducted for 40 marks each. Average of Marks scored in all three tests is added to test component. CIE is executed by way of quizzes / Alternate Assessment Tools (AATs), and three tests. **Some possible AATs:** seminar/assignments/ mini-projects/ concept videos/ partial reproduction of research work/ group activity/ any other.

Typical Evaluation pattern for regular courses is shown in Table 2.

Table 2: Distribution of weightage for CIE & SEE of Regular courses

	Component	Marks	Total Marks			
	CIE Test-1	40				
CIE	CIE Test-2	40				
	CIE Test-3	40	50			
	Assignments	10				
SEE	Semester End Examination	50				
	Grand Total					

CO/PO Mapping												
СО/РО	IP01	P02	PO3	P04	PO5	PO6	P07	PO8	60d	P010	P011	P012
CO21.1	3	2										3
CO21.2	3	2										3
CO21.3	3	2										3
CO21.4	3	2										3
CO21.5	3	2										3
Average	3	2										3