\square

Linear Algebra and Calculus

Time: 3 hrs.
Max. Marks: 100
Note: Answer any Five full questions, choosing ONE full question from each module.

\begin{tabular}{|c|c|c|c|}
\hline Q. \& \& MODULE-1 \& Marks

\hline 1 \& a

b

b \& \begin{tabular}{l}
Find the rank of the matrix by applying elementary row transformations
$$
A=\left(\begin{array}{cccc}
1 & 2 & -2 & 3 \\
2 & 5 & -4 & 6 \\
-1 & -3 & 2 & -2 \\
2 & 4 & -1 & 6
\end{array}\right)
$$

Investigate for what values of λ and μ the simultaneous equations $x+y+z=6, x+2 y+$ $3 z=10, x+2 y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions.

Solve by Gauss Jordan method
$$
\begin{array}{r}
4 x_{1}-2 x_{2}+6 x_{3}=8 \\
x_{1}+x_{2}-3 x_{3}=-1 \\
15 x_{1}-3 x_{2}+9 x_{3}=21
\end{array}
$$

 \&

(7 marks)

(7 marks)

(6 marks)
\end{tabular}

\hline 2 \& a

b

c \& \begin{tabular}{l}
Find the Eigen values and the corresponding Eigen vectors of the matrix
$$
A=\left(\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)
$$
$$
2 x+y+z=10
$$

Solve by Gauss elimination
$$
\begin{array}{r}
3 x+2 y+3 z=18 \\
x+4 y+9 z=16
\end{array}
$$
$$
x+y+52 z=110
$$

Solve by Gauss- Seidel method: $27 x+6 y-z=85$, Carryout four iterations
$$
6 x+15 y+2 z=72
$$

 \&

(7 marks)

(7 marks)

(6 marks)
\end{tabular}

\hline \& \& MODULE - 2 \&

\hline 3 \& a \& Obtain the nth derivative of $e^{a x} \cos (b x+c)$ and hence find nth derivative of $e^{2 x} \cos (3 x+5)$ \& (7 marks)

\hline
\end{tabular}

	b	Verify Rolle's theorem for the function $e^{x}(\sin x-\cos x)$ in the interval $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$ If x is positive, show that $x>\log (1+x)>x-\frac{1}{2} x^{2}$.	$\begin{aligned} & \text { (7 marks) } \\ & \text { (6 marks) } \end{aligned}$
4	a b c	Obtain the nth derivative of $\log (a x+b)$ and hence find nth derivative of $\log \left(4 x^{2}-1\right)$ If $f(x)=\sin ^{-1} x, 0<a<b<1$, use Mean value theorem to prove that $\frac{b-a}{\sqrt{\left(1-a^{2}\right)}}<$ $\sin ^{-1} b-\sin ^{-1} a<\frac{b-a}{\sqrt{\left(1-b^{2}\right)}}$ Using Maclaurin's expansion series prove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}---$	(7 marks) (7 marks) (6 marks)
		MODULE - 3	
5	a b c	Evaluate $\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{1 / x}$ Find the angle between the curves $r=a(1+\sin \theta)$ and $r=a(1-\sin \theta)$. Find the pedal equation of $\frac{2 a}{r}=1-\cos \theta$.	(7 marks) (7 marks) (6 marks)
6	a b c	Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ Find the angle between the radius vector and the tangent for the curve $\mathrm{r}=\mathrm{a}(1-\cos \theta)$. Also find the slope of the curve at $\theta=\pi / 6$. Find the radius of curvature of the curve $\mathrm{x}^{3}+\mathrm{y}^{3}=2 \mathrm{a}^{3}$ at the point (a, a)	(7 marks) (7 marks) (6 marks)
		MODULE - 4	
7	a	If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ than prove that i) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}$ ii) $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$ If $x+y+z=u, y+z=u v$ and $z=u v w$ then find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ Find the extreme value of $f(x, y)=x^{3} y^{2}(1-x-y)$.	(7 marks) (7 marks) (6 marks)
8	a b c	If $u=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$ find the value of $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}$ If $x=r \cos \theta, y=r \sin \theta$, evaluate $J=\frac{\partial(x, y)}{\partial(r, \theta)}$ and $J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}$ Find the maximum and minimum values of the function $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$	(7 marks) (7 marks) (6 marks)

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{2}{|r|}{MODULE-5} \& \\
\hline 9 \& a
b
c \& \begin{tabular}{l}
If \(\vec{F}=\operatorname{grad}\left(x^{3} y+y^{3} z+z^{3} x-x^{2} y^{2} z^{2}\right)\) then find div \(\vec{F}\) and curl \(\vec{F}\) at \((1,2,3)\) If \(\vec{F}=(x+y+a z) i+(b x+2 y-z) j+(x+c y+2 z) k\), find \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) such that \(\operatorname{curl} \vec{F}=\overrightarrow{0}\) and find \(\phi\) such that \(\nabla \phi=F\). \\
If \(\vec{F}=(x+y+1) i+j-(x+y) k\) then prove that \(\vec{F} \cdot \operatorname{curl} \vec{F}=0\).
\end{tabular} \& \begin{tabular}{l}
(7 marks) \\
(7 marks) \\
(6 marks)
\end{tabular} \\
\hline 10 \& a
b

c \& \begin{tabular}{l}
Find the angle between the surface $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point $(2,-1,2)$ Find a, b, c so that the directional derivative of $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has maximum magnitude of 64 in the direction of z-axis.

If $\vec{v}=3 x y^{2} z^{2} i+y^{3} z^{2} j-2 y^{2} z^{3} k$ and $\vec{F}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ the prove that \vec{v} is solenoidal and \vec{F} is irrotational

 \&

(7 marks)

(7 marks)

(6 marks)
\end{tabular}

\hline
\end{tabular}

