
 

 

 

SE E MO DEL  Q UEST IO N P APE R -2  UG  

 

First Semester B.E. Degree Examination, April - 2021 

Calculus and Linear Algebra 

Time: 3 hrs. Course Code:20MAT11 Max. Marks: 100 

 

Note: Answer ONE full question from each module. 

 

  MODULE - 1 Marks 

1  a. Find nth derivative of  xx 23 cossin  6 
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  OR  

2 a. Using Maclaurin’s series, expand )cos1log( x+  up to the terms containing x4 6 
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 c. Find the pedal equation of the curve )sin(cos  mmar mm +=  7 

  
 

MODULE – 2  
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 c. 
Expand yx cos.sin about the point (0,0) using Taylor’s theorem up to the term 

containing 3rd degree. 
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  MODULE - 3  

5 a. Evaluate  dxdyyx
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 b. 

Find the volume of the tetrahedron by the plane    1&0,0,0 =++===
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c. Prove that   
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  OR  

6 a. Evaluate by changing the order of integration .
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  MODULE – 4 
 

 

7 a. Find directional derivative of
322 xczbyzaxy ++=   at the point (-1,1,2) has maximum 

magnitude of 32 units in the direction parallel to y-axis find a, b, c. 
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 c. 
If kzcyxjzybxiazyxF ˆ)2(ˆ)2(ˆ)( +++−++++=  find a, b, c such that 0=FCurl  
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  OR  
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a.  Using Green’s theorem evaluate ( ) dyxdxyxy
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b. Employ Gauss divergence theorem to evaluate dsnA
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c. Use Stoke’s theorem to evaluate 
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  MODULE - 5  

9 a. Find the rank of
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 b. Reduce the matrix to diagonal form given
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c. Solve the system of equations 2x + y + 4z = 12, 4x+11y-z = 33, 8x-3y + 2z = 20 by 

Gauss Elimination method. 
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10 

a. Find Eigen values and Eigen vectors of the matrix
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b. Solve the system of equations x +4y +2z =15 ,   x + 2y+5z = 20,  5x+2y + z = 12 by 

Gauss-Seidel method 
7 

 
c. Solve the system of equations, x + 5y +z = 14, 2x +y + 3z = 13, 3x + y+ 4z = 17 by LU 

decomposition method 
7 
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