First Semester B.E. Degree Examination, April - 2021

Calculus and Linear Algebra

Time: 3 hrs. **Course Code:20MAT11**

1

Note: Answer ONE full question from each module.

MODULE - 1 Marks

1	a.	Find nth derivative of $\sin^3 x \cos^2 x$	6
	b.	Find the angle of intersection of the curves $r = \frac{a}{(1 + \cos\theta)}$ and $r = \frac{b}{(1 - \cos\theta)}$	7
	c.	For the curve $y = \frac{ax}{a+x}$, show that $\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^{2} + \left(\frac{y}{x}\right)^{2}$.	7
		OR	
2	a.	Using Maclaurin's series, expand $log(1+cos x)$ up to the terms containing x ⁴	6
	b.	Evaluate (i) $Lt_{x\to 0} (\cot x)^{\frac{1}{\log x}}$ (ii) $Lt_{x\to \frac{\pi}{2}} (2x \tan x - \pi \sec x)$	7
	c.	Find the pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$	7
MODULE – 2			
3		Find $\frac{du}{dt}$ at $t=0$ if $u=e^{x^2+y^2+z^2}$ and $x=t^2+1$, $y=t\cos t$, $z=\sin t$	6
	b.	If $u = x + y + z$, $uv = y + z$, $uvw = z$, show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$.	7
	c.	Find extreme values of $f(x, y) = x^4 + y^4 - 2(x - y)^2$	7
4	a.	If $u = e^{x^3 + y^3}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$	6
	b.	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	7
	c.	Expand sin x.cos y about the point $(0,0)$ using Taylor's theorem up to the term containing 3^{rd} degree.	7
		MODULE - 3	

a. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dy dx$ by changing to polar co-ordinates. 5 6

Find the volume of the tetrahedron by the plane x = 0, y = 0, z = 0 & $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ b. by using triple integration.

UG

Max. Marks: 100

7

c. Prove that
$$\int_{0}^{1} \frac{x^2 dx}{\sqrt{(1-x^4)}} \times \int_{0}^{1} \frac{dx}{\sqrt{(1+x^4)}} = \frac{\pi}{4\sqrt{2}}.$$

OR

9 a. Find the rank of $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by elementary row transformations.

6

7

- b. Reduce the matrix to diagonal form given $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ and hence find A⁴. 7
- c. Solve the system of equations 2x + y + 4z = 12, 4x+11y-z = 33, 8x-3y + 2z = 20 by Gauss Elimination method.
- a. Find Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ 6

- b. Solve the system of equations x + 4y + 2z = 15, x + 2y + 5z = 20, 5x + 2y + z = 12 by Gauss-Seidel method
- c. Solve the system of equations, x + 5y + z = 14, 2x + y + 3z = 13, 3x + y + 4z = 17 by LU decomposition method 7

7