First Semester B.E. Degree Examination, April - 2021

Calculus and Linear Algebra

Time: $\mathbf{3}$ hrs.
Course Code:20MAT11
Max. Marks: 100

Note: Answer ONE full question from each module.

MODULE - 1

Marks

a. Find nth derivative of $\sin ^{3} x \cos ^{2} x$
b. Find the angle of intersection of the curves $r=\frac{a}{(1+\cos \theta)}$ and $r=\frac{b}{(1-\cos \theta)}$
c. For the curve $y=\frac{a x}{a+x}$, show that $\left(\frac{2 \rho}{a}\right)^{\frac{2}{3}}=\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{x}\right)^{2}$.

OR
a. Using Maclaurin's series, expand $\log (1+\cos x)$ up to the terms containing x^{4}
b. Evaluate
(i) $\operatorname{Lt}_{x \rightarrow 0}(\cot x)^{\frac{1}{\log x}}$
(ii) $\underset{x \rightarrow \frac{\pi}{2}}{L t}(2 x \tan x-\pi \sec x)$
c. Find the pedal equation of the curve $r^{m}=a^{m}(\cos m \theta+\sin m \theta)$

MODULE - 2

3
a. Find $\frac{d u}{d t}$ at $t=0$ if $u=e^{x^{2}+y^{2}+z^{2}}$ and $x=t^{2}+1, y=t \cos t, z=\sin t$
b. If $u=x+y+z, u v=y+z, u v w=z$, show that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.
c. Find extreme values of $f(x, y)=x^{4}+y^{4}-2(x-y)^{2}$

4 a. If $u=e^{x^{3}+y^{3}}$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u \log u$
b. If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.

Expand $\sin x \cdot \cos y$ about the point $(0,0)$ using Taylor's theorem up to the term
c. containing $3^{\text {rd }}$ degree.

MODULE - 3

5
a. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d y d x$ by changing to polar co-ordinates.

Find the volume of the tetrahedron by the plane $\quad x=0, y=0, z=0 \& \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
b. by using triple integration.
c. Prove that $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{\left(1-x^{4}\right)}} \times \int_{0}^{1} \frac{d x}{\sqrt{\left(1+x^{4}\right)}}=\frac{\pi}{4 \sqrt{2}}$.

OR
a. Evaluate by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
b. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z . d y . d x$
c. Evaluate $\int_{0}^{1} x^{\frac{3}{2}}(1-x)^{\frac{1}{2}} d x$. by expressing in terms of beta and gamma functions.

MODULE-4

a. Find directional derivative of $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at the point $(-1,1,2)$ has maximum magnitude of 32 units in the direction parallel to y-axis find a, b, c.
b. Show that $\vec{F}=\frac{x i+y j}{x^{2}+y^{2}}$ is both solenoidal and irrotational.

If $F=(x+y+a z) \hat{i}+(b x+2 y-z) \hat{j}+(x+c y+2 z) \hat{k}$ find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that Curl $\vec{F}=0$ and find ϕ such that $\nabla \phi=F$.

OR

a. Using Green's theorem evaluate $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y \quad$ where C is the boundary of the region bounded by $y=x$ and $y=x^{2}$.
b. Employ Gauss divergence theorem to evaluate $\int_{s} \vec{A} . \hat{n} . d s$ where $\vec{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and ' s ' is the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
c. Use Stoke's theorem to evaluate $\int_{s} \operatorname{curl} \vec{F} . \hat{n} d s$ for
$\vec{F}=(y-z-2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$ where S is the surface of the cube formed by the planes $x=0, y=0, x=2, y=2$ and $z=2$

MODULE - 5

a. Find the rank of $\left[\begin{array}{cccc}2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1\end{array}\right]$ by elementary row transformations.
b. Reduce the matrix to diagonal form given $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ and hence find A^{4}.
c. Solve the system of equations $2 x+y+4 z=12,4 x+11 y-z=33,8 x-3 y+2 z=20$ by Gauss Elimination method.
a. Find Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
b. Solve the system of equations $x+4 y+2 z=15, \quad x+2 y+5 z=20,5 x+2 y+z=12$ by
c. Solve the system of equations, $x+5 y+z=14,2 x+y+3 z=13,3 x+y+4 z=17$ by LU decomposition method

