First Semester B.E. Degree Examination, April - 2021

Calculus and Linear Algebra

Time: $\mathbf{3}$ hrs.
Course Code: 20MAT11
Max. Marks: 100
Note: Answer ONE full question from each module.

MODULE - 1

Marks
1 a. Find nth derivative of $y=\frac{x^{2}}{2 x^{2}+7 x+6}$
b. Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$
c. Find the pedal equation of the curve $r^{m} \cos m \theta=a^{m}$

OR

2 a. Using Maclaurin's series, expand $\sqrt{(1+\sin 2 x)}$ up to the terms containing x^{4}
b. Find the angle of intersection of the curves $r^{2} \sin 2 \theta=4$ and $r^{2}=16 \sin 2 \theta$
c. Show that the radius of curvature at $(a, 0)$ on the curve $y^{2}=a^{2}(a-x) / x$ is $a / 2$

MODULE - 2

3 a. If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
b. If $u=x^{2}-y^{2}, v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$

Expand $x^{2} y+3 y-2$ in powers of $(\mathrm{x}-1)$ and $(\mathrm{y}+2)$ using Taylor's theorem up to third degree terms

OR

4
a. If $z=e^{a x+b y} f(a x-b y)$, prove that $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z$
b. If $u=u\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$, show that $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$
c. Find maximum and minimum values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$

MODULE - 3

5
a. Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x \quad 6$
b. Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$
c. Prove that with usual notations $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$

OR

a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x$ by changing to polar co-ordinates
b. Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
c. Show that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \times \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$

MODULE-4

a. Find directional derivative of $\emptyset=x^{2} y z+4 x z^{2}$ at the point $(1,-2,1)$ in the direction of the vector $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
Evaluate $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point $(1,2,3)$ given
b. $\vec{F}=\operatorname{grad}\left(x^{3} y+y^{3} z+z^{3} x-x^{2} y^{2} z^{2}\right)$
c. Show that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$ where $r^{2}=x^{2}+y^{2}+z^{2}$

OR

a. Using Green's theorem, evaluate $\int_{c}\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region bounded by $x=0, y=0 \& x+y=1$
Employ Gauss divergence theorem to evaluate $\iint_{s} \vec{F} . \hat{n} d s$ where
b. $\vec{F}=\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$
c. Use Stoke's theorem to evaluate $\int_{s} \operatorname{curl} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=y \hat{\imath}+(x-2 z x) \hat{\jmath}-x y \hat{k}$ S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the xy-plane

MODULE - 5

a. Find the rank of $\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right]$ by elementary row transformations
b. Reduce the matrix to diagonal form given $A=\left[\begin{array}{cc}-19 & 7 \\ -42 & 16\end{array}\right]$
c. Solve the system of equations $20 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=17,3 \mathrm{x}+20 \mathrm{y}-\mathrm{z}=-18$, $2 x-3 y+20 z=25$ by Gauss-Seidel method.

OR

a. Find Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
b. Solve the system of equations $x+y+z=9, \quad 2 x-3 y+4 z=13,3 x+4 y+5 z=40$ by Gauss Elimination method.
c. Employ LU decomposition method to solve the system of equations $3 x+2 y+7 z=4$, $2 x+3 y+z=5,3 x+4 y+z=7$.

