SEE MODEL QUESTION PAPER-1

First Semester B.E. Degree Examination, April - 2021

Calculus and Linear Algebra

Time: 3 hrs.

Course Code: 20MAT11

Max. Marks: 100

Note: Answer ONE full question from each module.

MODULE - 1	Marks
------------	-------

Find nth derivative of $y = \frac{x^2}{2x^2 + 7x + 6}$ 1 6 a.

b.	Evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2}$	7
c.	Find the pedal equation of the curve $r^m \cos m\theta = a^m$	7

Find the pedal equation of the curve $r^m \cos m \theta = a^m$ c.

OR

2	a.	Using Maclaurin's series, expand $\sqrt{(1 + \sin 2x)}$ up to the terms containing x^4	6
	b.	Find the angle of intersection of the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$	7
	c.	Show that the radius of curvature at (a, 0) on the curve $y^2 = a^2(a-x)/x$ is $a/2$	7

MODULE -2

3 a. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$ 6

b. If
$$u = x^2 - y^2$$
, $v = 2xy$ and $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(u,v)}{\partial(r,\theta)}$ 7

Expand $x^2y + 3y - 2$ in powers of (x-1) and (y+2) using Taylor's theorem up to third 7 c. degree terms

OR

4 a. If
$$z = e^{ax+by} f(ax-by)$$
, prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$ 6

b. If
$$u = u\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$ 7

c. Find maximum and minimum values of
$$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$
 7

MODULE - 3

5	a.	Evaluate by changing the order of integration $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$						
	b.	Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$	7					

c. Prove that with usual notations
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$
 7

OR

a. Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx$ by changing to polar co-ordinates 6 6 b. Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^{2} + y^{2} + z^{2}) dx dy dz$ 7

7

6

7

7

7

c. Show that $\int_0^{\pi/2} \sqrt{\sin\theta} \, d\theta \times \int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} = \pi$

MODULE - 4

7 a. Find directional derivative of $\emptyset = x^2yz + 4xz^2$ at the point (1, -2,1) in the direction 6 of the vector $2\hat{\imath} - \hat{\jmath} - 2\hat{k}$ Evaluate div \vec{F} and curl \vec{F} at the point (1,2,3) given b. $\vec{F} = grad(x^3y + y^3z + z^3x - x^2y^2z^2)$ 7

c. Show that $div(grad r^n) = n(n+1) r^{n-2}$ where $r^2 = x^2 + y^2 + z^2$ 7

OR

a. Using Green's theorem, evaluate $\int_{c} (3x - 8y^2)dx + (4y - 6xy)dy$ where C is the boundary of the region bounded by x = 0, y = 0 & x + y = 1Employ Gauss divergence theorem to evaluate $\iint \vec{F} \cdot \hat{n}ds$ where

8

- b. $\vec{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k}$ taken over the rectangular parallelopiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ 7
- c. Use Stoke's theorem to evaluate $\int curl \vec{F} \cdot \hat{n} ds$, where $\vec{F} = y\hat{i} + (x 2zx)\hat{j} xy\hat{k}$ S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane 7

MODULE - 5

			5		
9	a.		5 4	by elementary row transformations	6

- b. Reduce the matrix to diagonal form given $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ 7
- c. Solve the system of equations 20x + y 2z = 17, 3x + 20y z = -18, 2x - 3y + 20z = 25 by Gauss-Seidel method.

OR

			0	-0	2	
10	a.	Find Eigen values and Eigen vectors of the matrix	-6	7	-4	6
			2	-4	3	

- b. Solve the system of equations x + y + z = 9, 2x 3y + 4z = 13, 3x + 4y + 5z = 40 by Gauss Elimination method.
- c. Employ LU decomposition method to solve the system of equations 3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7.

* * * * *