SEE MODEL QUESTION PAPER-2

First Semester B.E. Degree Examination, April - 2021

Fundamentals of Electrical Engineering

Time: 3 hrs.
Max. Marks: 100

Note: Answer any Five full questions, choosing ONE full question from each module

	Module 1	Marks
1	a Draw a schematic diagram and explain steam power station. b. Draw and explain a typical structure of electrical power system. c. List the applications of solar PV system system.	$\begin{array}{r} \hline 10 \\ 6 \\ 4 \end{array}$
OR		
2	a. With a schematic diagram, explain the working of hydroelectric power station. b. List the classifications of Energy Resources and explain briefly. c. List the applications of biogas system.	$\begin{gathered} 10 \\ 6 \\ 4 \\ \hline \end{gathered}$
Module 2		
3	3.a. State and explain Kirchhoff's laws as applied to DC circuits. 3.b. A 8Ω resistor is in series with a parallel combination of two resistors 12Ω and 6Ω. If the current in 6Ω resistor is 5 A , determine the total power dissipated in the circuit. 3.c. Determine the mesh currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in the circuit shown in fig. (3.c) fig. (3.c)	5 7 7
OR		
4	a. State and explain Ohm`s law. Mention its limitations. b Determine the current flowing through the 3Ω resistor (from A to B) in the circuit shown in fig. (4.b) using superposition theorem. fig. (4.b)	5 7
	c. Determine the value of R in the network shown in fig. (4.c) fig. (4.c)	8
:---:	:---:	:---:
Module 3		
5	a. Show that the power consumed by a pure capacitor is zero. Draw the voltage, current and power wave forms. b. A choke coil takes a current of 2 A lagging 60° behind the applied voltage of 220 V at 50 Hz . Calculate the inductance, resistance and impedance of the coil. Also determine power consumed, when it is connected to a $100 \mathrm{~V}, 25 \mathrm{~Hz}$ supply. c. For the network shown in fig. (5.c), find (i) current in each branch (ii) power factor of the circuit. fig. (5.c)	5 7 7
OR		
6	a. Define and derive an expression for average vale of an alternating quantity. b. A series circuit with resistance $0 f 10 \Omega$, inductance of 0.2 H and capacitance of 40 uF is supplied with a 100 V supply at 50 Hz . Find the current, power and power factor of the circuit.	10 10
Module 4		
7	a. In a three phase delta connection, find the relation between the line and phase quantities of voltages and currents. b. Mention the advantages of 3-phase system over single phase system. c. A 3-phase, $50 \mathrm{~Hz}, 16$ pole alternator with star connected winding has 144 slots with conductor/slot is 10.the flux per pole is 24.8 mWb sinusoidally distributed. The coils are full pitched. Find (i) speed and (ii) line emf.	7 8 8 8
OR		
8	a. Explain with a neat sketch the construction of a synchronous generator.	10
	b. A balanced star connected load of (8+j6) $\Omega /$ phase is connected to a 3-phase, 220 V supply. find the line current, power factor, power reactive volt-ampere and total volt- ampere.	10
:---	:---	:---:
Module 5		
9	a. Derive the emf equation of an transformer. b. A three phase 6 pole 50 Hz induction motor has a slip of 1% at no load and 3\% at full load. Determine: i) Synchronous speed ii) No load speed iii) Full load speed iv) frequency of rotor current at stand still. v) Frequency of rotor current at full load.	10

