Semester End Examinations (SEE) 2020-21

Model Question Paper-2
Subject: Engineering Mechanics
Course code: 20CIV14
Semester: I
Duration: 3 Hours
Note: Answer any five full questions selecting at least one from each Module.

Module 1			
1	a	Explain the Following. i) Composition of forces and Resolution of forces ii) Moment of a force and Couple	8
	b	Determine the magnitude, direction and the point of appliction of the resultant force for the given sysem of forces as shown in figure.1.b	6
	C	State and prove Varignon's theorem. / How is moment of a resultant equated to moment of forces acting on a system of forces.	6
OR			
2	a	Forces of $20 \mathrm{KN}, 30 \mathrm{KN}, 40 \mathrm{KN}, 50 \mathrm{KN}$, and 60 KN act from the vertex ' A ' of rectangulr hexagon $A B C D E F$ towards other vertices B, C, D, E and F respectively as shown in Fig.2.a. Determine the magniude and direction of reultatant of forces.	8
	B	A flat plate is subjected to a coplanar system of forces shown in Fig.2.b. Each square of the inscribed grid is having length of 1.0 m .	8
	c	Explain transmissibility of force.	4

Module 2			
3	a	The frictionless pulley ' A ' shown in Fig.3.a. is supplied by two bars $A B$ and $A C$ which are hinged at ' B ' and ' C ' to a vertical wall. The flexible cable DG hinged at ' D ', goes over the pulley and suports a load of 20 kN at ' G '. The angles between the various members are shown in the figure. Determine the forces in the bars AB and AC. Neglect the size and weight of the pulley. Fig.3.a	10
	b	Determine the reactions at the point of contact for the sphere shown in Fig. 3.b.	6
	c	Explain the types of loading on the beams.	4
OR			
4	a	Determine the distance x of the load P from the support A, if the reaction RA is twice as great as reaction RB. Take $P=2 \mathrm{kN}, \mathrm{Q}=1 \mathrm{kN}$	8
	b	With neat sketches, explain various types of supports.	6
	c	Find the support reactions RA and RB for the beam loaded as shown in Fig. 4.c.	6
Module 3			
5	a	Locate the centroid of a given composite area shown in Fig. 5.a	14

	b	Derive the position of centroid of a semi-circular lamina of radius "R".	06
OR			
6	a	The cross-section of a cast iron beam is shown in Fig. Determine the moment of Inertia about the centroidal axix	14
	b	Derive an expression for moment of inertia of a semicircle with respect to its diameter line and also w.r.t centroidal axis parallel to diameter line.	06
		Module 4	
7	a	What is the value of ' P ' in the system shown in Figure, to cause the motion to impend to the right? Assume the pulley is smooth and coefficient of friction between the other contact surfaces is 0.20 .	10
	b	A ladder 7 m long weighing 300 N is resting against a wall at an angle of 60° to the horizontal ground. A man weighing 700 N climbs the ladder, at what position does he induce slipping. Take $\mu=0.25$ for all contact surfaces.	10
OR			
8	a	Explain different types of frictions	4
	b	Define the terms: a. Angle of friction b. Angle of Repose c. Limiting Friction d. Coefficient of friction	8
	C	What should be the value of Θ if Figure Q 5 (d) which will make the motion of 900 N block down the plane to impend? The coefficient of friction for all the contact surfaces is $1 / 3$.	8

Module 5			
9	a	Explain with neat sketch for projectile motion: i) Range ii) Time of flight iii) Maximum height iv) Angle of projection	10
	b	A stone is dropped into a well and a sound of splash is heard after 4 seconds. Find the depth of well if velocity of sound is $320 \mathrm{~m} / \mathrm{s}$.	10
OR			
10	a	A burglar's car starts with an acceleration of $2 \mathrm{~m} / \mathrm{s} 2$. A police vigilant party came after 5 seconds and continued to chase the burgler's car with uniform velocity of $20 \mathrm{~m} / \mathrm{s}$. find the time taken in which the police van will overtake the car.	12
	b	A cricket ball is thrown by a fielder in ground from a height of 3 m at an angle of 400 with horizontal. The velocity with which the ball is thrown is $30 \mathrm{~m} / \mathrm{s}$. the ball hits the wicket at a height of 0.3 m from ground. Determine the distance of fielder from the wicket when the ball is thrown.	10

