Semester End Examinations (SEE) 2020-21 Odd Semester

Model Question Paper-1

Engineering Mechanics
Course code: 20CIV14

Semester: I

Note: Answer any five full questions selecting at least one from each Module

Module-1			
1	a	Define the Following. i) Particle ii) Rigid Body iii) Continuum iv) Force	8
	b	The 200 N force is to be resolved into components along lines $a-a^{\prime}$ and $b-b^{\prime}$. Determine the angle α knowing that the component along $b-b^{\prime}$ is to be 120 N . What is the corresponding value of the component along $a-a^{\prime}$?	6
	c	Discuss the engineering fields where each Newton's laws are more applicable with examples	6
OR			
2	a	For the system of forces shown in figure find the required value of α if the resultant is to be vertical and the corresponding magnitude of the resultant	4
	B	Four wooden members are joined with metal plate connectors and are in equilibrium under the action of the four forces shown. Knowing that $F_{A}=2.3$ kN and $\mathrm{F}_{\mathrm{B}}=2.1 \mathrm{kN}$, determine the magnitudes of the other two forces	8

	c	Determine the resultant of the four forces acting on a body as shown in Fig. with respect to point " O "	8
		Module-2	
3	a	Two traffic signals are temporarily suspended from a cable as shown. Knowing that the signal at B weighs 300 N , determine the weight of the signal at C	10
	b	Find the reaction at the contact surface for two identical cylinders weighing 1000N each as shown in Fig	6
	C	Classify the loads considered in the design of structures with neat sketches	4
OR			
4	a	For the beam and loading shown, determine the range of values of the distance a for which the reaction at B does not exceed 250 N downward or 500 N upward	10
	b	Explain the necessary equations of equilibrium for the analysis of structures in space.	4
	C	Determine (a) the x, y, and z components of the 600-N force, (b) the angles $\vartheta x, \vartheta y$, and ϑz that the force forms with the coordinate axes.	6

| 5 | a | Locate the centroid of a given composite area shown in Fig. | 14 |
| :---: | :--- | :--- | :--- | :--- |

8	a	Distinguish between Static friction and kinetic friction	4
	b	Explain the stress-strain curve of a mild steel with salient features.	8
	C	Exaplin the significance of different mechanical properties of engineering materials.	8
Module 5			
9		A stone is dropped into well and the splash of sound is heard after 9 seconds. Determine the height of drop from the water surface. Assume velocity of sound to be $330 \mathrm{~m} / \mathrm{sec}$.	8
		Two cars P and Q accelerated from a standing start. The acceleration of P is 1.3 $\mathrm{m} / \mathrm{s}^{2}$ and that of Q is $1.6 \mathrm{~m} / \mathrm{s}^{2}$. If Q was originally 6 m behind P, how long it takes to overtake P?	8
		State D'Alembert's principle and mention its applications in Plane Motion.	4
OR			
10		An aircraft moving horizontally at $120 \mathrm{~km} / \mathrm{h}$ speed at an elevation of 1200 m targets a point on the ground and releases a bomb which hits it. Determine the horizontal distance of the aircraft (position when it releases the bomb) from the target. Also calculate the velocity and direction with which bomb hits the target.	12
		A particle, starting from rest, moves in a straight line, whose equation of motion is given by $s=5 t^{3}-3 t^{2}+6$. Find the displacement, velocity, and acceleration of the particle after 5 seconds.	10

